Bài tập 5.7 trang 39 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường xoay quanh các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 5.7, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 3y - z = 0,\left( Q \right):x - y - 2z + 1 = 0\). a) Chứng minh rằng hai mặt phẳng (P) và (Q) vuông góc với nhau. b) Tìm điểm M thuộc trục Ox và cách đều hai mặt phẳng (P) và (Q).
Đề bài
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 3y - z = 0,\left( Q \right):x - y - 2z + 1 = 0\).
a) Chứng minh rằng hai mặt phẳng (P) và (Q) vuông góc với nhau.
b) Tìm điểm M thuộc trục Ox và cách đều hai mặt phẳng (P) và (Q).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc để chứng minh: Trong không gian Oxyz, cho hai mặt phẳng \(\left( \alpha \right):Ax + By + Cz + D = 0\), \(\left( \beta \right):A'x + B'y + C'z + D' = 0\) với hai vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\) tương ứng. Khi đó, \(\left( \alpha \right) \bot \left( \beta \right) \Leftrightarrow \overrightarrow n \bot \overrightarrow {n'} \Leftrightarrow AA' + BB' + CC' = 0\).
Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Trong không gian Oxyz, khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) là \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Lời giải chi tiết
a) Mặt phẳng (P) có một vectơ pháp tuyến là: \(\overrightarrow {{n_P}} = \left( {1;3; - 1} \right)\), mặt phẳng (Q) có một vectơ pháp tuyến là: \(\overrightarrow {{n_Q}} = \left( {1; - 1; - 2} \right)\).
Ta có: \(\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} = 1.1 + \left( { - 1} \right).3 + \left( { - 1} \right).\left( { - 2} \right) = 0\) nên \(\overrightarrow {{n_P}} \bot \overrightarrow {{n_Q}} \). Do đó, hai mặt phẳng (P) và (Q) vuông góc với nhau.
b) Điểm M thuộc trục Ox nên \(M\left( {x;0;0} \right)\).
Vì M cách đều hai mặt phẳng (P) và (Q) nên \(d\left( {M,\left( P \right)} \right) = d\left( {M,\left( Q \right)} \right)\)
\( \Rightarrow \frac{{\left| x \right|}}{{\sqrt {{1^2} + {3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {x + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }}\)
\( \Rightarrow \frac{{\left| x \right|}}{{\sqrt {11} }} = \frac{{\left| {x + 1} \right|}}{{\sqrt 6 }} \Rightarrow 6{x^2} = 11{\left( {x + 1} \right)^2} \Rightarrow 5{x^2} + 22x + 11 = 0 \Rightarrow \left[ \begin{array}{l}x = \frac{{ - 11 - \sqrt {66} }}{5}\\x = \frac{{ - 11 + \sqrt {66} }}{5}\end{array} \right.\)
Vậy \(M\left( {\frac{{ - 11 + \sqrt {66} }}{5};0;0} \right);M\left( {\frac{{ - 11 - \sqrt {66} }}{5};0;0} \right)\) thì thỏa mãn yêu cầu bài toán.
Bài tập 5.7 trang 39 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Bài tập 5.7 thường có dạng như sau: Cho hàm số y = f(x). Hãy khảo sát hàm số và vẽ đồ thị của nó.
Để giải bài tập này, chúng ta thực hiện các bước như sau:
Ví dụ: Cho hàm số y = x3 - 3x2 + 2.
Giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | ↗ | ↘ | ↗ |
Từ bảng biến thiên, ta thấy hàm số đạt cực đại tại x = 0, ycđ = 2 và đạt cực tiểu tại x = 2, yct = -2.
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải quyết bài tập 5.7 trang 39 SGK Toán 12 tập 2 - Kết nối tri thức một cách hiệu quả. Chúc các em học tốt!
Ngoài ra, các em có thể tham khảo thêm các bài giải khác tại giaitoan.edu.vn để nâng cao kiến thức và kỹ năng giải toán.
Việc hiểu rõ bản chất của các khái niệm và áp dụng linh hoạt các công thức là chìa khóa để thành công trong môn Toán. Hãy dành thời gian ôn tập và luyện tập thường xuyên để đạt kết quả tốt nhất.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.