Bài tập 4.11 trang 18 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 4.11 trang 18 SGK Toán 12 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \(v\left( t \right) = {t^2} - t - 6\) (m/s). a) Tìm độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\), tức là tính \(\int\limits_1^4 {v\left( t \right)dt} \). b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} \).
Đề bài
Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \(v\left( t \right) = {t^2} - t - 6\) (m/s).
a) Tìm độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\), tức là tính \(\int\limits_1^4 {v\left( t \right)dt} \).
b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} \).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)
Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có: \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) \(\left( {a < c < b} \right)\)
Lời giải chi tiết
a) Độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\) là:
\(\int\limits_1^4 {v\left( t \right)dt} = \int\limits_1^4 {\left( {{t^2} - t - 6} \right)dt} = \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}4\\1\end{array} \right. = \left( {\frac{{{4^3}}}{3} - \frac{{{4^2}}}{2} - 6.4} \right) - \left( {\frac{{{1^3}}}{3} - \frac{{{1^2}}}{2} - 6.1} \right) = \frac{{ - 9}}{2}\)
Vậy vật dịch chuyển \(\frac{9}{2}m\) trong khoảng thời gian \(1 \le t \le 4\).
b) Tổng quãng đường vật đi được trong khoảng thời gian này là:
\(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} = \int\limits_1^4 {\left| {{t^2} - t - 6} \right|dt} = \int\limits_1^3 {\left| {{t^2} - t - 6} \right|dt} + \int\limits_3^4 {\left| {{t^2} - t - 6} \right|dt} = - \int\limits_1^3 {\left( {{t^2} - t - 6} \right)dt} + \int\limits_3^4 {\left( {{t^2} - t - 6} \right)dt} \)
\( = - \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}3\\1\end{array} \right. + \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}4\\3\end{array} \right.\)
\( = - \left[ {\left( {\frac{{{3^3}}}{3} - \frac{{{3^2}}}{2} - 6.3} \right) - \left( {\frac{{{1^3}}}{3} - \frac{{{1^2}}}{2} - 6.1} \right)} \right] + \left[ {\left( {\frac{{{4^3}}}{3} - \frac{{{4^2}}}{2} - 6.4} \right) - \left( {\frac{{{3^3}}}{3} - \frac{{{3^2}}}{2} - 6.3} \right)} \right] = \frac{{22}}{3} + \frac{{17}}{6} = \frac{{61}}{6}\)
Bài tập 4.11 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Để hiểu sâu hơn về đạo hàm và ứng dụng của đạo hàm, các em có thể tham khảo thêm các tài liệu sau:
Để củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm, các em nên luyện tập thêm các bài tập tương tự trong sách giáo khoa và sách bài tập. Ngoài ra, các em có thể tìm kiếm các bài tập trực tuyến trên các trang web học Toán online.
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập 4.11 trang 18 SGK Toán 12 tập 2 - Kết nối tri thức và tự tin hơn trong việc học Toán 12.