Logo Header
  1. Môn Toán
  2. Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một điểm I thỏa mãn (overrightarrow {AI} = 3overrightarrow {IG} ), ở đó G là trọng tâm của tam giác BCD. Áp dụng tính chất trên để tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8cm (H.2.30).

Đề bài

Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một điểm I thỏa mãn \(\overrightarrow {AI} = 3\overrightarrow {IG} \), ở đó G là trọng tâm của tam giác BCD. Áp dụng tính chất trên để tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8cm (H.2.30).

Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức 2

Sử dụng kiến thức về khái niệm tích của một số với một vectơ trong không gian để tính: Trong không gian, tích của một số thực \(k \ne 0\) với một vectơ \(\overrightarrow a \ne \overrightarrow 0 \) là một vectơ, kí hiệu là \(k\overrightarrow a \) được xác định như sau:

- Cùng hướng với vectơ \(\overrightarrow a \) nếu \(k > 0\), ngược hướng với vectơ \(\overrightarrow a \) nếu \(k < 0\).

- Có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\).

Lời giải chi tiết

Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức 3

Đặt tên khối rubik là tứ diện đều ABCD có G là trọng tâm tam giác BCD, I là trọng tâm tứ diện ABCD. Do đó, \(\overrightarrow {AI} = 3\overrightarrow {IG} \Rightarrow IG = \frac{1}{4}AG\)

Vì chiều cao của rubik bằng 8cm nên \(AG = 8cm \Rightarrow IG = \frac{1}{4}.8 = 2\left( {cm} \right)\)

Vậy khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó bằng 2cm.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan

Bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc giải quyết các bài toán liên quan đến sự biến thiên của hàm số.

Nội dung bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 2.8 thường xoay quanh việc tìm đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit và các hàm số hợp. Đặc biệt, bài tập có thể yêu cầu học sinh tìm đạo hàm cấp hai, đạo hàm của hàm số ẩn, hoặc áp dụng đạo hàm để giải các bài toán tối ưu hóa.

Phương pháp giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

  1. Xác định hàm số cần tìm đạo hàm: Đọc kỹ đề bài để xác định chính xác hàm số cần tìm đạo hàm.
  2. Chọn quy tắc tính đạo hàm phù hợp: Dựa vào cấu trúc của hàm số, chọn quy tắc tính đạo hàm phù hợp (quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, hàm lượng giác, hàm mũ, hàm logarit,...).
  3. Áp dụng quy tắc tính đạo hàm: Áp dụng quy tắc đã chọn để tính đạo hàm của hàm số.
  4. Rút gọn kết quả: Rút gọn kết quả để có được biểu thức đạo hàm đơn giản nhất.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

Ví dụ: Tính đạo hàm của hàm số y = sin(2x + 1).

Giải:

  • Hàm số y = sin(2x + 1) là hàm hợp.
  • Đặt u = 2x + 1. Khi đó, y = sin(u).
  • Ta có: dy/du = cos(u) và du/dx = 2.
  • Áp dụng quy tắc đạo hàm của hàm hợp: dy/dx = (dy/du) * (du/dx) = cos(u) * 2 = 2cos(2x + 1).
  • Vậy, đạo hàm của hàm số y = sin(2x + 1) là y' = 2cos(2x + 1).

Các dạng bài tập thường gặp trong bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

  • Tính đạo hàm của hàm số lượng giác: Sử dụng các công thức đạo hàm của sinx, cosx, tanx, cotx.
  • Tính đạo hàm của hàm số mũ: Sử dụng công thức đạo hàm của ex, ax.
  • Tính đạo hàm của hàm số logarit: Sử dụng công thức đạo hàm của ln(x), loga(x).
  • Tính đạo hàm của hàm số hợp: Áp dụng quy tắc đạo hàm của hàm hợp.
  • Tìm đạo hàm cấp hai: Tính đạo hàm của đạo hàm cấp một.

Lưu ý khi giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi tính toán.
  • Sử dụng máy tính bỏ túi để kiểm tra kết quả (nếu cần thiết).

Tài liệu tham khảo hữu ích

  • Sách giáo khoa Toán 12 tập 1 - Kết nối tri thức.
  • Sách bài tập Toán 12 tập 1 - Kết nối tri thức.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12