Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.41 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các giải pháp học tập hiệu quả và chất lượng.
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) \(y = \frac{{2x + 1}}{{3x - 2}}\) trên nửa khoảng \(\left[ {2; + \infty } \right)\); b) \(y = \sqrt {2 - {x^2}} \);
Đề bài
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:a) \(y = \frac{{2x + 1}}{{3x - 2}}\) trên nửa khoảng \(\left[ {2; + \infty } \right)\);b) \(y = \sqrt {2 - {x^2}} \);
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).
Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):
1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.
2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).
3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên.
Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)
Lời giải chi tiết
a) Ta có: \(y' = \frac{{ - 7}}{{{{\left( {3x - 2} \right)}^2}}} < 0\;\forall x \in \left[ {2; + \infty } \right)\)
Nên \(\mathop {\max }\limits_{\left[ {2; + \infty } \right)} y = y\left( 2 \right) = \frac{{2.2 + 1}}{{3.2 - 2}} = \frac{5}{4}\) , hàm số không có giá trị nhỏ nhất trên nửa khoảng \(\left[ {2; + \infty } \right)\).
b) Tập xác định: \(\left[ { - \sqrt 2 ;\sqrt 2 } \right]\).
\(y' = \frac{{ - 2x}}{{2\sqrt {2 - {x^2}} }} = \frac{{ - x}}{{\sqrt {2 - {x^2}} }},y' = 0 \Leftrightarrow x = 0\) (thỏa mãn)
\(y\left( { - \sqrt 2 } \right) = y\left( {\sqrt 2 } \right) = 0;y\left( 0 \right) = \sqrt 2 \)
Do đó, \(\mathop {\min }\limits_{\left[ { - \sqrt 2 ;\sqrt 2 } \right]} y = y\left( { - \sqrt 2 } \right) = y\left( {\sqrt 2 } \right) = 0;\mathop {\max }\limits_{\left[ { - \sqrt 2 ;\sqrt 2 } \right]} y = y\left( 0 \right) = \sqrt 2 \)
Bài tập 1.41 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, điều kiện xác định của hàm số và các phép biến đổi hàm số để giải quyết.
Bài tập 1.41 yêu cầu xác định tập xác định của hàm số sau:
y = √(2x - 1) / (x - 3)
Để xác định tập xác định của hàm số y = √(2x - 1) / (x - 3), ta cần thực hiện các bước sau:
Bước 1: Giải bất phương trình 2x - 1 ≥ 0
2x ≥ 1
x ≥ 1/2
Bước 2: Giải phương trình x - 3 ≠ 0
x ≠ 3
Bước 3: Kết hợp các điều kiện
Ta cần tìm các giá trị của x thỏa mãn cả hai điều kiện x ≥ 1/2 và x ≠ 3.
Vậy, tập xác định của hàm số là:
D = [1/2; 3) ∪ (3; +∞)
Khi giải bài tập về tập xác định của hàm số, cần chú ý đến các điều kiện sau:
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Bài tập 1.41 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập cơ bản về tập xác định của hàm số. Việc nắm vững phương pháp giải bài tập này sẽ giúp các em tự tin hơn khi giải các bài tập phức tạp hơn trong chương trình học.
Giaitoan.edu.vn hy vọng bài viết này đã cung cấp cho các em những kiến thức hữu ích và giúp các em học tập tốt hơn. Chúc các em thành công!
Giá trị x | 2x - 1 | x - 3 | Kết luận |
---|---|---|---|
0 | -1 | -3 | Không thuộc tập xác định |
1 | 1 | -2 | Thuộc tập xác định |
3 | 5 | 0 | Không thuộc tập xác định |
4 | 7 | 1 | Thuộc tập xác định |