Logo Header
  1. Môn Toán
  2. Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thức

Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thức

Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tại giaitoan.edu.vn. Chúng tôi xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 6, 7, 8 sách giáo khoa Toán 12 tập 2 chương trình Kết nối tri thức.

Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết cung cấp những lời giải chính xác, logic và giúp các em nắm vững kiến thức.

Tính chất cơ bản của nguyên hàm

LT3

    Trả lời câu hỏi Luyện tập 3 trang 7 SGK Toán 12 Kết nối tri thức

    Cho hàm số \(f\left( x \right) = {x^n}\left( {n \in \mathbb{N}*} \right)\).

    a) Chứng minh rằng hàm số \(F\left( x \right) = \frac{{{x^{n + 1}}}}{{n + 1}}\) là một nguyên hàm của hàm số f(x). Từ đó tìm \(\int {{x^n}dx} \).

    b) Từ kết quả câu a, tìm \(\int {k{x^n}dx} \) (với k là hằng số thực khác 0).

    Phương pháp giải:

    Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.

    Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

    Sử dụng tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

    Lời giải chi tiết:

    a) Ta có: \(F'\left( x \right) = {\left( {\frac{{{x^{n + 1}}}}{{n + 1}}} \right)'} = \frac{{\left( {n + 1} \right){x^n}}}{{n + 1}} = {x^n} = f\left( x \right)\) nên hàm số F(x) là một nguyên hàm của hàm số f(x). Do đó, \(\int {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C\).

    b) \(\int {k{x^n}dx} = k\int {{x^n}dx} = \frac{{k.{x^{n + 1}}}}{{n + 1}} + C\).

    Câu 1

      Trả lời câu hỏi Hoạt động 3 trang 6 SGK Toán 12 Kết nối tri thức

      Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.

      a) Chứng minh rằng kF(x) là một nguyên hàm của hàm số kf(x) trên K.

      b) Nêu nhận xét về \(\int {kf\left( x \right)dx} \) và \(k\int {f\left( x \right)dx} \)

      Phương pháp giải:

      Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.

      Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

      Lời giải chi tiết:

      a) Vì F(x) là một nguyên hàm của f(x) trên K nên \(F'\left( x \right) = f\left( x \right)\) nên \(kF'\left( x \right) = kf\left( x \right)\) (với k khác 0). Do đó, kF(x) là một nguyên hàm của hàm số kf(x) trên K.

      b) Ta có: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

      LT4

        Trả lời câu hỏi Luyện tập 4 trang 7 SGK Toán 12 Kết nối tri thức

        Tìm:

        a) \(\int {\left( {3{x^2} + 1} \right)dx} \);

        b) \(\int {{{\left( {2x - 1} \right)}^2}dx} \).

        Phương pháp giải:

        Sử dụng tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

        Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \)

        Lời giải chi tiết:

        a) \(\int {\left( {3{x^2} + 1} \right)dx} = 3\int {{x^2}dx + \int {1dx = {x^3} + x + C} } \);

        b) \(\int {{{\left( {2x - 1} \right)}^2}dx} = \int {\left( {4{x^2} - 4x + 1} \right)dx = 4\int {{x^2}dx - 4\int {xdx + \int {dx = \frac{{4{x^3}}}{3} - 2{x^2} + x + C} } } } \).

        HĐ4

          Trả lời câu hỏi Hoạt động 4 trang 7 SGK Toán 12 Kết nối tri thức

          Cho f(x) và g(x) là hai hàm số liên tục trên K. Giả sử F(x) là một nguyên hàm của f(x), G(x) là một nguyên hàm của g(x) trên K.

          a) Chứng minh rằng \(F\left( x \right) + G\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) + g\left( x \right)\) trên K.

          b) Nêu nhận xét về \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx\) và \(\int {f\left( x \right)dx + \int {g\left( x \right)dx} } \).

          Phương pháp giải:

          Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.

          Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

          Lời giải chi tiết:

          VD

            Trả lời câu hỏi Vận dụng trang 8 SGK Toán 12 Kết nối tri thức

            Doanh thu bán hàng của một công ty khi bán một loại sản phẩm là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bán là hàm số \({M_R}\left( x \right) = R'\left( x \right)\). Một công ty công nghệ cho biết, tốc độ biến đổi doanh thu khi bán một loại con chíp của hãng được cho bởi \({M_R}\left( x \right) = 300 - 0,1x\), ở đó x là số lượng chíp đã bán ra. Tìm doanh thu của công ty khi đã bán 1 000 con chíp.

            Phương pháp giải:

            Sử dụng kiến thức về nguyên hàm của hàm số để tính: Vì \({M_R}\left( x \right) = R'\left( x \right)\) nên doanh thu R(x) là một nguyên hàm của \({M_R}\left( x \right)\).

            Lời giải chi tiết:

            Ta có: \(\int {{M_R}\left( x \right)dx = \int {\left( {300 - 0,1x} \right)dx = 300\int {dx - 0,1\int {xdx = 300x - 0,05{x^2} + C} } } } \)

            Do đó, \(R\left( x \right) = 300x - 0,05{x^2} + C\)

            Ta có: \(R\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(R\left( x \right) = 300x - 0,05{x^2}\)

            Doanh thu của công ty khi đã bán 1 000 con chíp là: \(R\left( {1000} \right) = 300.1000 - 0,{05.1000^2} = 250\;000\) (triệu đồng)

            Lựa chọn câu để xem lời giải nhanh hơn
            • Câu 1
            • LT3
            • HĐ4
            • LT4
            • VD

            Trả lời câu hỏi Hoạt động 3 trang 6 SGK Toán 12 Kết nối tri thức

            Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.

            a) Chứng minh rằng kF(x) là một nguyên hàm của hàm số kf(x) trên K.

            b) Nêu nhận xét về \(\int {kf\left( x \right)dx} \) và \(k\int {f\left( x \right)dx} \)

            Phương pháp giải:

            Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.

            Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

            Lời giải chi tiết:

            a) Vì F(x) là một nguyên hàm của f(x) trên K nên \(F'\left( x \right) = f\left( x \right)\) nên \(kF'\left( x \right) = kf\left( x \right)\) (với k khác 0). Do đó, kF(x) là một nguyên hàm của hàm số kf(x) trên K.

            b) Ta có: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

            Trả lời câu hỏi Luyện tập 3 trang 7 SGK Toán 12 Kết nối tri thức

            Cho hàm số \(f\left( x \right) = {x^n}\left( {n \in \mathbb{N}*} \right)\).

            a) Chứng minh rằng hàm số \(F\left( x \right) = \frac{{{x^{n + 1}}}}{{n + 1}}\) là một nguyên hàm của hàm số f(x). Từ đó tìm \(\int {{x^n}dx} \).

            b) Từ kết quả câu a, tìm \(\int {k{x^n}dx} \) (với k là hằng số thực khác 0).

            Phương pháp giải:

            Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.

            Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

            Sử dụng tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

            Lời giải chi tiết:

            a) Ta có: \(F'\left( x \right) = {\left( {\frac{{{x^{n + 1}}}}{{n + 1}}} \right)'} = \frac{{\left( {n + 1} \right){x^n}}}{{n + 1}} = {x^n} = f\left( x \right)\) nên hàm số F(x) là một nguyên hàm của hàm số f(x). Do đó, \(\int {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C\).

            b) \(\int {k{x^n}dx} = k\int {{x^n}dx} = \frac{{k.{x^{n + 1}}}}{{n + 1}} + C\).

            Trả lời câu hỏi Hoạt động 4 trang 7 SGK Toán 12 Kết nối tri thức

            Cho f(x) và g(x) là hai hàm số liên tục trên K. Giả sử F(x) là một nguyên hàm của f(x), G(x) là một nguyên hàm của g(x) trên K.

            a) Chứng minh rằng \(F\left( x \right) + G\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) + g\left( x \right)\) trên K.

            b) Nêu nhận xét về \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx\) và \(\int {f\left( x \right)dx + \int {g\left( x \right)dx} } \).

            Phương pháp giải:

            Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.

            Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.

            Lời giải chi tiết:

            Trả lời câu hỏi Luyện tập 4 trang 7 SGK Toán 12 Kết nối tri thức

            Tìm:

            a) \(\int {\left( {3{x^2} + 1} \right)dx} \);

            b) \(\int {{{\left( {2x - 1} \right)}^2}dx} \).

            Phương pháp giải:

            Sử dụng tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

            Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \)

            Lời giải chi tiết:

            a) \(\int {\left( {3{x^2} + 1} \right)dx} = 3\int {{x^2}dx + \int {1dx = {x^3} + x + C} } \);

            b) \(\int {{{\left( {2x - 1} \right)}^2}dx} = \int {\left( {4{x^2} - 4x + 1} \right)dx = 4\int {{x^2}dx - 4\int {xdx + \int {dx = \frac{{4{x^3}}}{3} - 2{x^2} + x + C} } } } \).

            Trả lời câu hỏi Vận dụng trang 8 SGK Toán 12 Kết nối tri thức

            Doanh thu bán hàng của một công ty khi bán một loại sản phẩm là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bán là hàm số \({M_R}\left( x \right) = R'\left( x \right)\). Một công ty công nghệ cho biết, tốc độ biến đổi doanh thu khi bán một loại con chíp của hãng được cho bởi \({M_R}\left( x \right) = 300 - 0,1x\), ở đó x là số lượng chíp đã bán ra. Tìm doanh thu của công ty khi đã bán 1 000 con chíp.

            Phương pháp giải:

            Sử dụng kiến thức về nguyên hàm của hàm số để tính: Vì \({M_R}\left( x \right) = R'\left( x \right)\) nên doanh thu R(x) là một nguyên hàm của \({M_R}\left( x \right)\).

            Lời giải chi tiết:

            Ta có: \(\int {{M_R}\left( x \right)dx = \int {\left( {300 - 0,1x} \right)dx = 300\int {dx - 0,1\int {xdx = 300x - 0,05{x^2} + C} } } } \)

            Do đó, \(R\left( x \right) = 300x - 0,05{x^2} + C\)

            Ta có: \(R\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(R\left( x \right) = 300x - 0,05{x^2}\)

            Doanh thu của công ty khi đã bán 1 000 con chíp là: \(R\left( {1000} \right) = 300.1000 - 0,{05.1000^2} = 250\;000\) (triệu đồng)

            Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

            Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

            Mục 2 của SGK Toán 12 tập 2 Kết nối tri thức tập trung vào các kiến thức về đạo hàm của hàm số. Đây là một phần quan trọng trong chương trình Toán 12, đóng vai trò nền tảng cho việc giải quyết các bài toán liên quan đến cực trị, đơn điệu của hàm số và ứng dụng của đạo hàm trong các lĩnh vực khác.

            Nội dung chi tiết mục 2 trang 6,7,8

            Mục 2 bao gồm các nội dung chính sau:

            • Định nghĩa đạo hàm: Giới thiệu khái niệm đạo hàm của hàm số tại một điểm và trên một khoảng.
            • Ý nghĩa hình học của đạo hàm: Giải thích mối liên hệ giữa đạo hàm và hệ số góc của tiếp tuyến của đồ thị hàm số.
            • Các quy tắc tính đạo hàm: Trình bày các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
            • Đạo hàm của một số hàm số cơ bản: Tính đạo hàm của các hàm số thường gặp như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit.

            Giải chi tiết bài tập trang 6

            Trang 6 SGK Toán 12 tập 2 Kết nối tri thức chứa các bài tập vận dụng định nghĩa đạo hàm để tính đạo hàm của một số hàm số đơn giản. Các bài tập này giúp học sinh làm quen với việc áp dụng các quy tắc tính đạo hàm và rèn luyện kỹ năng tính toán.

            Ví dụ: Tính đạo hàm của hàm số f(x) = x2 + 3x - 2.

            Giải:

            f'(x) = 2x + 3

            Giải chi tiết bài tập trang 7

            Trang 7 SGK Toán 12 tập 2 Kết nối tri thức tập trung vào việc tính đạo hàm của các hàm số lượng giác. Các bài tập này yêu cầu học sinh nắm vững các công thức đạo hàm của các hàm số sin, cos, tan, cot.

            Ví dụ: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x).

            Giải:

            g'(x) = cos(x) - sin(x)

            Giải chi tiết bài tập trang 8

            Trang 8 SGK Toán 12 tập 2 Kết nối tri thức chứa các bài tập tổng hợp về đạo hàm, bao gồm cả các bài tập tính đạo hàm của hàm số đa thức, hàm lượng giác và hàm hợp. Các bài tập này giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán.

            Ví dụ: Tính đạo hàm của hàm số h(x) = (x2 + 1)sin(x).

            Giải:

            h'(x) = 2xsin(x) + (x2 + 1)cos(x)

            Mẹo học tốt môn Toán 12

            1. Nắm vững định nghĩa và các quy tắc tính đạo hàm: Đây là nền tảng để giải quyết mọi bài toán về đạo hàm.
            2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài.
            3. Sử dụng các công cụ hỗ trợ: Các công cụ tính đạo hàm online có thể giúp bạn kiểm tra kết quả và tiết kiệm thời gian.
            4. Học nhóm: Trao đổi kiến thức và kinh nghiệm với bạn bè để hiểu bài sâu hơn.

            Kết luận

            Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về mục 2 trang 6,7,8 SGK Toán 12 tập 2 Kết nối tri thức và tự tin giải quyết các bài tập liên quan. Chúc các em học tập tốt!

            Tài liệu, đề thi và đáp án Toán 12