Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tập 2 của giaitoan.edu.vn. Chúng tôi xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 22, 23, 24 sách giáo khoa Toán 12 tập 2 - Kết nối tri thức.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Ứng dụng tích phân để tính thể tích vật thể
Trả lời câu hỏi Hoạt động 3 trang 22 SGK Toán 12 Kết nối tri thức
Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng \(x = a\) và \(x = b\left( {a < b} \right)\) (H.4.20).
a) Tính thể tích V của hình trụ.
b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x \(\left( {a \le x \le b} \right)\). Từ đó tính \(\int\limits_a^b {S\left( x \right)dx} \) và so sánh với V.
Phương pháp giải:
Sử dụng kiến thức về thể tích hình trụ để tính: Hình trụ có bán kính đáy R và chiều cao h thì có thể tích là: \(V = \pi {R^2}h\)
Lời giải chi tiết:
a) Thể tích V của hình trụ là: \(V = \pi {R^2}h = \pi {R^2}\left( {b - a} \right)\) (h là chiều cao của hình trụ)
b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x là: \(S\left( x \right) = \pi {R^2}\).
Ta có: \(\int\limits_a^b {S\left( x \right)dx} = \int\limits_a^b {\pi {R^2}dx} = \pi {R^2}x\left| \begin{array}{l}b\\a\end{array} \right. = \pi {R^2}\left( {b - a} \right)\). Do đó, \(V = \int\limits_a^b {S\left( x \right)dx} \).
Trả lời câu hỏi Vận dụng 2 trang 23 SGK Toán 12 Kết nối tri thức
Tính thể tích của khối chóp cụt đều có diện tích hai đáy là \({S_o},{S_1}\) và chiều cao bằng h (H.4.24). Từ đó suy ra công thức tính thể tích khối chóp đều có diện tích đáy bằng S và chiều cao bằng h.
Phương pháp giải:
Sử dụng kiến thức về công thức tính thể tích vật để để tính: Cho một vật thể trong không gian Oxyz. Gọi \(\beta \) là phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm có hoành độ \(x = a,x = b\). Một mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x cắt vật thể theo mặt cắt có diện tích là S(x). Giả sử S(x) là hàm số liên tục trên đoạn [a; b]. Khi đó thể tích V của phần vật thể \(\beta \) được tính bởi công thức \(V = \int\limits_a^b {S\left( x \right)dx} \).
Lời giải chi tiết:
Trong hệ trục tọa độ Oxyz, ta đặt khối chóp (tạo ra khối chóp cụt) sao cho đường cao nằm trên trục Ox và đỉnh trùng với gốc tọa độ.
Gọi a và b lần lượt là khoảng cách từ O đến đáy nhỏ và đáy lớn. Khi đó, chiều cao của khối chóp cụt là: \(h = b - a\).
Thiết diện của khối chóp cụt đều cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x \(\left( {a \le x \le b} \right)\) là một đa giác đều đồng dạng với đáy lớn với tỉ số đồng dạng là \(\frac{x}{b}\).
Ta có: \(\frac{{S\left( x \right)}}{{{S_1}}} = \frac{{{x^2}}}{{{b^2}}}\) nên \(S\left( x \right) = {S_1}.\frac{{{x^2}}}{{{b^2}}}\).
Thể tích của khối chóp cụt đều là:
\(V = \int\limits_a^b {{S_1}\frac{{{x^2}}}{{{b^2}}}dx} = \frac{{{S_1}\left( {{b^3} - {a^3}} \right)}}{{3{b^2}}} = \frac{{b - a}}{3}.\frac{{{S_1}{a^2} + {S_1}ab + {S_1}{b^2}}}{{{b^2}}} = \frac{h}{3}\left( {\frac{{{S_1}{a^2}}}{{{b^2}}} + \frac{{{S_1}a}}{b} + {S_1}} \right)\)
Lại có: \({S_0} = S\left( a \right) = \frac{{{S_1}{a^2}}}{{{b^2}}},\frac{{{S_1}a}}{b} = \sqrt {{S_1}.\frac{{{S_1}{a^2}}}{{{b^2}}}} = \sqrt {{S_1}{S_0}} \). Do đó, \(V = \frac{h}{3}\left( {{S_0} + \sqrt {{S_0}{S_1}} + {S_1}} \right)\)
Khối chóp đều được coi là khối chóp cụt đều có \({S_0} = 0\). Do đó, thể tích khối chóp đều có diện tích đáy bằng S và chiều cao bằng h là: \(V = \frac{1}{3}S.h\).
Trả lời câu hỏi Vận dụng 3 trang 25 SGK Toán 12 Kết nối tri thức
a) Tính thể tích của khối tròn xoay sinh ra khi quay hình thang vuông OABC trong mặt phẳng Oxy với \(OA = h,AB = R\) và \(OC = r\), quanh trục Ox (H.4.28).
b) Từ công thức thu được ở phần a, hãy rút ra công thức tính thể tích của khối nón có bán kính đáy bằng R và chiều cao h.
Phương pháp giải:
Sử dụng kiến thức về công thức tính thể tích của khối tròn xoay để tính: Cho hàm số f(x) liên tục, không âm trên đoạn [a; b]. Khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) xung quanh trục hoành, ta được hình khối gọi là một khối tròn xoay. Khi cắt khối tròn xoay đó bởi một mặt phẳng vuông góc với trục Ox tại điểm \(x \in \left[ {a;b} \right]\) được một hình tròn có bán kính f(x). Thể tích của khối tròn xoay này là: \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).
Lời giải chi tiết:
a)
Ta có: \(C\left( {0;r} \right),B\left( {h,R} \right) \Rightarrow \overrightarrow {BC} \left( { - h,r - R} \right) \Rightarrow \overrightarrow n \left( {r - R,h} \right)\)
Phương trình đường thẳng BC là: \(\left( {r - R} \right)x + h\left( {y - r} \right) = 0 \Leftrightarrow y = \frac{{hr + \left( {R - r} \right)x}}{h}\)
Thể tích hình cần tính là:
\(V = \pi \int\limits_0^h {{{\left[ {\frac{{hr + \left( {R - r} \right)x}}{h}} \right]}^2}dx} = \pi \int\limits_0^h {{{\left[ {r + \frac{{\left( {R - r} \right)x}}{h}} \right]}^2}dx} = \pi \int\limits_0^h {\left[ {{r^2} + \frac{{2r\left( {R - r} \right)x}}{h} + \frac{{{{\left( {R - r} \right)}^2}{x^2}}}{{{h^2}}}} \right]dx} \)
\( = \pi \left( {{r^2}x + \frac{{r\left( {R - r} \right){x^2}}}{h} + \frac{{{{\left( {R - r} \right)}^2}{x^3}}}{{3{h^2}}}} \right)\left| \begin{array}{l}h\\0\end{array} \right. = \pi \left( {{r^2}h + \frac{{r\left( {R - r} \right){h^2}}}{h} + \frac{{{{\left( {R - r} \right)}^2}{h^3}}}{{3{h^2}}}} \right)\)
\( = \pi \left( {{r^2}h + r\left( {R - r} \right)h + \frac{{{{\left( {R - r} \right)}^2}h}}{3}} \right) = \pi \left( {{r^2}h + rRh - {r^2}h + \frac{{{R^2}h}}{3} - \frac{{2rRh}}{3} + \frac{{{r^2}h}}{3}} \right)\)
\( = \pi \left( {\frac{{rRh}}{3} + \frac{{{R^2}h}}{3} + \frac{{{r^2}h}}{3}} \right) = \frac{1}{3}\pi h\left( {{R^2} + rR + {r^2}} \right)\)
b) Khi \(r = 0\) thì khối nón cụt trở thành khối nón có chiều cao h và bán kính đáy R. Do đó, thể tích khối nón là: \(V = \frac{1}{3}\pi {R^2}h\).
Trả lời câu hỏi Hoạt động 4 trang 24 SGK Toán 12 Kết nối tri thức
Xét hình phẳng giới hạn bởi đồ thị hàm số \(f\left( x \right) = \frac{1}{2}x\), trục hoành và hai đường thẳng \(x = 0,x = 4\). Khi quay hình phẳng này xung quanh trục hoành Ox ta được khối nón có đỉnh là gốc O, trục là Ox và đáy là hình tròn bán kính bằng 2 (H.4.25).
a) Tính thể tích V của khối nón.
b) Chứng minh rằng khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x \(\left( {0 \le x \le 4} \right)\) thì mặt cắt thu được là một hình tròn có bán kính là f(x), do đó diện tích mặt cắt là \(S\left( x \right) = \pi {f^2}\left( x \right)\). Tính \(\pi \int\limits_0^4 {{f^2}\left( x \right)dx} \) và so sánh với V.
Phương pháp giải:
Sử dụng kiến thức về thể tích khối nón để tính: Thể tích của khối nón có bán kính R, chiều cao h là: \(V = \frac{1}{3}\pi {R^2}h\).
Lời giải chi tiết:
a) Thể tích của khối nón là: \(V = \frac{1}{3}.\pi {.2^2}.4 = \frac{{16\pi }}{3}\)
b)
Khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x \(\left( {0 \le x \le 4} \right)\) thì mặt cắt thu được là một hình tròn có bán kính là \(f\left( x \right) = \frac{1}{2}x\).
Diện tích mặt cắt là: \(S\left( x \right) = \pi {f^2}\left( x \right) = \frac{1}{4}\pi {x^2}\).
Ta có: \(\pi \int\limits_0^4 {{f^2}\left( x \right)dx} = \pi \int\limits_0^4 {\frac{1}{4}{x^2}dx = \frac{{\pi {x^3}}}{{12}}\left| \begin{array}{l}4\\0\end{array} \right. = } \frac{{16\pi }}{3}\). Do đó, \(V = \pi \int\limits_0^4 {{f^2}\left( x \right)dx} \).
Trả lời câu hỏi Hoạt động 3 trang 22 SGK Toán 12 Kết nối tri thức
Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng \(x = a\) và \(x = b\left( {a < b} \right)\) (H.4.20).
a) Tính thể tích V của hình trụ.
b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x \(\left( {a \le x \le b} \right)\). Từ đó tính \(\int\limits_a^b {S\left( x \right)dx} \) và so sánh với V.
Phương pháp giải:
Sử dụng kiến thức về thể tích hình trụ để tính: Hình trụ có bán kính đáy R và chiều cao h thì có thể tích là: \(V = \pi {R^2}h\)
Lời giải chi tiết:
a) Thể tích V của hình trụ là: \(V = \pi {R^2}h = \pi {R^2}\left( {b - a} \right)\) (h là chiều cao của hình trụ)
b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x là: \(S\left( x \right) = \pi {R^2}\).
Ta có: \(\int\limits_a^b {S\left( x \right)dx} = \int\limits_a^b {\pi {R^2}dx} = \pi {R^2}x\left| \begin{array}{l}b\\a\end{array} \right. = \pi {R^2}\left( {b - a} \right)\). Do đó, \(V = \int\limits_a^b {S\left( x \right)dx} \).
Trả lời câu hỏi Vận dụng 2 trang 23 SGK Toán 12 Kết nối tri thức
Tính thể tích của khối chóp cụt đều có diện tích hai đáy là \({S_o},{S_1}\) và chiều cao bằng h (H.4.24). Từ đó suy ra công thức tính thể tích khối chóp đều có diện tích đáy bằng S và chiều cao bằng h.
Phương pháp giải:
Sử dụng kiến thức về công thức tính thể tích vật để để tính: Cho một vật thể trong không gian Oxyz. Gọi \(\beta \) là phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm có hoành độ \(x = a,x = b\). Một mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x cắt vật thể theo mặt cắt có diện tích là S(x). Giả sử S(x) là hàm số liên tục trên đoạn [a; b]. Khi đó thể tích V của phần vật thể \(\beta \) được tính bởi công thức \(V = \int\limits_a^b {S\left( x \right)dx} \).
Lời giải chi tiết:
Trong hệ trục tọa độ Oxyz, ta đặt khối chóp (tạo ra khối chóp cụt) sao cho đường cao nằm trên trục Ox và đỉnh trùng với gốc tọa độ.
Gọi a và b lần lượt là khoảng cách từ O đến đáy nhỏ và đáy lớn. Khi đó, chiều cao của khối chóp cụt là: \(h = b - a\).
Thiết diện của khối chóp cụt đều cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x \(\left( {a \le x \le b} \right)\) là một đa giác đều đồng dạng với đáy lớn với tỉ số đồng dạng là \(\frac{x}{b}\).
Ta có: \(\frac{{S\left( x \right)}}{{{S_1}}} = \frac{{{x^2}}}{{{b^2}}}\) nên \(S\left( x \right) = {S_1}.\frac{{{x^2}}}{{{b^2}}}\).
Thể tích của khối chóp cụt đều là:
\(V = \int\limits_a^b {{S_1}\frac{{{x^2}}}{{{b^2}}}dx} = \frac{{{S_1}\left( {{b^3} - {a^3}} \right)}}{{3{b^2}}} = \frac{{b - a}}{3}.\frac{{{S_1}{a^2} + {S_1}ab + {S_1}{b^2}}}{{{b^2}}} = \frac{h}{3}\left( {\frac{{{S_1}{a^2}}}{{{b^2}}} + \frac{{{S_1}a}}{b} + {S_1}} \right)\)
Lại có: \({S_0} = S\left( a \right) = \frac{{{S_1}{a^2}}}{{{b^2}}},\frac{{{S_1}a}}{b} = \sqrt {{S_1}.\frac{{{S_1}{a^2}}}{{{b^2}}}} = \sqrt {{S_1}{S_0}} \). Do đó, \(V = \frac{h}{3}\left( {{S_0} + \sqrt {{S_0}{S_1}} + {S_1}} \right)\)
Khối chóp đều được coi là khối chóp cụt đều có \({S_0} = 0\). Do đó, thể tích khối chóp đều có diện tích đáy bằng S và chiều cao bằng h là: \(V = \frac{1}{3}S.h\).
Trả lời câu hỏi Hoạt động 4 trang 24 SGK Toán 12 Kết nối tri thức
Xét hình phẳng giới hạn bởi đồ thị hàm số \(f\left( x \right) = \frac{1}{2}x\), trục hoành và hai đường thẳng \(x = 0,x = 4\). Khi quay hình phẳng này xung quanh trục hoành Ox ta được khối nón có đỉnh là gốc O, trục là Ox và đáy là hình tròn bán kính bằng 2 (H.4.25).
a) Tính thể tích V của khối nón.
b) Chứng minh rằng khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x \(\left( {0 \le x \le 4} \right)\) thì mặt cắt thu được là một hình tròn có bán kính là f(x), do đó diện tích mặt cắt là \(S\left( x \right) = \pi {f^2}\left( x \right)\). Tính \(\pi \int\limits_0^4 {{f^2}\left( x \right)dx} \) và so sánh với V.
Phương pháp giải:
Sử dụng kiến thức về thể tích khối nón để tính: Thể tích của khối nón có bán kính R, chiều cao h là: \(V = \frac{1}{3}\pi {R^2}h\).
Lời giải chi tiết:
a) Thể tích của khối nón là: \(V = \frac{1}{3}.\pi {.2^2}.4 = \frac{{16\pi }}{3}\)
b)
Khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x \(\left( {0 \le x \le 4} \right)\) thì mặt cắt thu được là một hình tròn có bán kính là \(f\left( x \right) = \frac{1}{2}x\).
Diện tích mặt cắt là: \(S\left( x \right) = \pi {f^2}\left( x \right) = \frac{1}{4}\pi {x^2}\).
Ta có: \(\pi \int\limits_0^4 {{f^2}\left( x \right)dx} = \pi \int\limits_0^4 {\frac{1}{4}{x^2}dx = \frac{{\pi {x^3}}}{{12}}\left| \begin{array}{l}4\\0\end{array} \right. = } \frac{{16\pi }}{3}\). Do đó, \(V = \pi \int\limits_0^4 {{f^2}\left( x \right)dx} \).
Trả lời câu hỏi Vận dụng 3 trang 25 SGK Toán 12 Kết nối tri thức
a) Tính thể tích của khối tròn xoay sinh ra khi quay hình thang vuông OABC trong mặt phẳng Oxy với \(OA = h,AB = R\) và \(OC = r\), quanh trục Ox (H.4.28).
b) Từ công thức thu được ở phần a, hãy rút ra công thức tính thể tích của khối nón có bán kính đáy bằng R và chiều cao h.
Phương pháp giải:
Sử dụng kiến thức về công thức tính thể tích của khối tròn xoay để tính: Cho hàm số f(x) liên tục, không âm trên đoạn [a; b]. Khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) xung quanh trục hoành, ta được hình khối gọi là một khối tròn xoay. Khi cắt khối tròn xoay đó bởi một mặt phẳng vuông góc với trục Ox tại điểm \(x \in \left[ {a;b} \right]\) được một hình tròn có bán kính f(x). Thể tích của khối tròn xoay này là: \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).
Lời giải chi tiết:
a)
Ta có: \(C\left( {0;r} \right),B\left( {h,R} \right) \Rightarrow \overrightarrow {BC} \left( { - h,r - R} \right) \Rightarrow \overrightarrow n \left( {r - R,h} \right)\)
Phương trình đường thẳng BC là: \(\left( {r - R} \right)x + h\left( {y - r} \right) = 0 \Leftrightarrow y = \frac{{hr + \left( {R - r} \right)x}}{h}\)
Thể tích hình cần tính là:
\(V = \pi \int\limits_0^h {{{\left[ {\frac{{hr + \left( {R - r} \right)x}}{h}} \right]}^2}dx} = \pi \int\limits_0^h {{{\left[ {r + \frac{{\left( {R - r} \right)x}}{h}} \right]}^2}dx} = \pi \int\limits_0^h {\left[ {{r^2} + \frac{{2r\left( {R - r} \right)x}}{h} + \frac{{{{\left( {R - r} \right)}^2}{x^2}}}{{{h^2}}}} \right]dx} \)
\( = \pi \left( {{r^2}x + \frac{{r\left( {R - r} \right){x^2}}}{h} + \frac{{{{\left( {R - r} \right)}^2}{x^3}}}{{3{h^2}}}} \right)\left| \begin{array}{l}h\\0\end{array} \right. = \pi \left( {{r^2}h + \frac{{r\left( {R - r} \right){h^2}}}{h} + \frac{{{{\left( {R - r} \right)}^2}{h^3}}}{{3{h^2}}}} \right)\)
\( = \pi \left( {{r^2}h + r\left( {R - r} \right)h + \frac{{{{\left( {R - r} \right)}^2}h}}{3}} \right) = \pi \left( {{r^2}h + rRh - {r^2}h + \frac{{{R^2}h}}{3} - \frac{{2rRh}}{3} + \frac{{{r^2}h}}{3}} \right)\)
\( = \pi \left( {\frac{{rRh}}{3} + \frac{{{R^2}h}}{3} + \frac{{{r^2}h}}{3}} \right) = \frac{1}{3}\pi h\left( {{R^2} + rR + {r^2}} \right)\)
b) Khi \(r = 0\) thì khối nón cụt trở thành khối nón có chiều cao h và bán kính đáy R. Do đó, thể tích khối nón là: \(V = \frac{1}{3}\pi {R^2}h\).
Mục 2 trong SGK Toán 12 tập 2 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này một cách hiệu quả, học sinh cần nắm vững lý thuyết, công thức và phương pháp giải liên quan. Bài viết này sẽ cung cấp lời giải chi tiết cho từng bài tập trang 22, 23, 24, đồng thời phân tích các điểm quan trọng cần lưu ý.
Bài 1: (Nội dung bài tập và lời giải chi tiết, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa). Ví dụ, bài tập có thể liên quan đến đạo hàm của hàm số, và lời giải sẽ trình bày cách tính đạo hàm, phân tích điều kiện xác định, và kết luận.
Bài 2: (Nội dung bài tập và lời giải chi tiết). Ví dụ, bài tập có thể yêu cầu tìm cực trị của hàm số, và lời giải sẽ trình bày cách tìm đạo hàm bậc nhất, giải phương trình đạo hàm bằng 0, xét dấu đạo hàm để xác định cực trị.
Bài 3: (Nội dung bài tập và lời giải chi tiết).
Bài 4: (Nội dung bài tập và lời giải chi tiết). Ví dụ, bài tập có thể liên quan đến ứng dụng đạo hàm để khảo sát hàm số, và lời giải sẽ trình bày cách tìm khoảng đồng biến, nghịch biến, cực trị, điểm uốn, và vẽ đồ thị hàm số.
Bài 5: (Nội dung bài tập và lời giải chi tiết).
Bài 6: (Nội dung bài tập và lời giải chi tiết).
Bài 7: (Nội dung bài tập và lời giải chi tiết). Ví dụ, bài tập có thể liên quan đến bài toán tối ưu, và lời giải sẽ trình bày cách xây dựng hàm số, tìm tập xác định, tìm đạo hàm, giải phương trình đạo hàm, xét dấu đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất.
Bài 8: (Nội dung bài tập và lời giải chi tiết).
Bài 9: (Nội dung bài tập và lời giải chi tiết).
Kiến thức về đạo hàm và ứng dụng của đạo hàm có vai trò quan trọng trong nhiều lĩnh vực của toán học và các ngành khoa học khác. Ví dụ, đạo hàm được sử dụng để tính vận tốc, gia tốc trong vật lý, để tối ưu hóa lợi nhuận trong kinh tế, và để phân tích sự thay đổi của các hiện tượng trong tự nhiên.
Để hiểu sâu hơn về các kiến thức trong mục 2, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng với lời giải chi tiết và những lưu ý quan trọng trong bài viết này, các em sẽ tự tin hơn khi giải các bài tập trong mục 2 trang 22, 23, 24 SGK Toán 12 tập 2 - Kết nối tri thức. Chúc các em học tập tốt!