Bài tập 2.30 trang 73 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Trong không gian Oxyz, cho hình bình hành ABCD có \(A\left( { - 1;0;3} \right),B\left( {2;1; - 1} \right)\) và \(C\left( {3;2;2} \right)\). Tọa độ của điểm D là A. \(\left( {2; - 1;0} \right)\). B. \(\left( {0; - 1; - 6} \right)\). C. \(\left( {0;1;6} \right)\). D. \(\left( { - 2;1;0} \right)\).
Đề bài
Trong không gian Oxyz, cho hình bình hành ABCD có \(A\left( { - 1;0;3} \right),B\left( {2;1; - 1} \right)\) và \(C\left( {3;2;2} \right)\). Tọa độ của điểm D làA. \(\left( {2; - 1;0} \right)\).B. \(\left( {0; - 1; - 6} \right)\).C. \(\left( {0;1;6} \right)\).D. \(\left( { - 2;1;0} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tọa độ của vectơ trong không gian để tìm tọa độ điểm D: Trong không gian, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\). Khi đó, \(\overrightarrow a = \overrightarrow b \) nếu và chỉ nếu \(\left\{ \begin{array}{l}x = x'\\y = y'\\z = z'\end{array} \right.\).
Lời giải chi tiết
Ta có: \(\overrightarrow {AB} \left( {3;1; - 4} \right)\). Gọi tọa độ của điểm D là D(x; y; z) thì \(\overrightarrow {DC} \left( {3 - x;2 - y;2 - z} \right)\)
Vì ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \Rightarrow \left\{ \begin{array}{l}3 = 3 - x\\1 = 2 - y\\ - 4 = 2 - z\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\\z = 6\end{array} \right.\)
Do đó, tọa độ của điểm D là \(\left( {0;1;6} \right)\)
Chọn C
Bài tập 2.30 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = -2.
Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, học sinh có thể tham khảo các bài tập tương tự sau:
Để học tập môn Toán 12 hiệu quả, học sinh nên:
Giaitoan.edu.vn hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập 2.30 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức và đạt kết quả tốt trong môn học.