Bài tập 4.22 trang 27 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 4.22 trang 27 SGK Toán 12 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Nguyên hàm F(x) của hàm số \(f\left( x \right) = {e^x} - 3{e^{ - x}}\) thỏa mãn \(F\left( 0 \right) = 4\) là A. \(F\left( x \right) = {e^x} - 3{e^{ - x}}\). B. \(F\left( x \right) = {e^x} + 3{e^{ - 2x}}\). C. \(F\left( x \right) = {e^x} + 3{e^{ - x}}\). D. \(F\left( x \right) = {e^x} + 3{e^{ - x}} + 4\).
Đề bài
Nguyên hàm F(x) của hàm số \(f\left( x \right) = {e^x} - 3{e^{ - x}}\) thỏa mãn \(F\left( 0 \right) = 4\) là
A. \(F\left( x \right) = {e^x} - 3{e^{ - x}}\).
B. \(F\left( x \right) = {e^x} + 3{e^{ - 2x}}\).
C. \(F\left( x \right) = {e^x} + 3{e^{ - x}}\).
D. \(F\left( x \right) = {e^x} + 3{e^{ - x}} + 4\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)
Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \)
Sử dụng kiến thức về nguyên hàm của hàm số mũ để tính: \(\int {{e^x}dx} = {e^x} + C\)
Lời giải chi tiết
Ta có: \(F\left( x \right) = \int {\left( {{e^x} - 3{e^{ - x}}} \right)dx} = \int {{e^x}dx} - 3\int {{{\left( {\frac{1}{e}} \right)}^x}} dx = {e^x} + 3{e^{ - x}} + C\)
Lại có: \(F\left( 0 \right) = 4\) nên \({e^0} + 3{e^0} + C = 4\) nên \(C = 0\). Vậy \(F\left( x \right) = {e^x} + 3{e^{ - x}}\)
Chọn C
Bài tập 4.22 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Thông thường, bài tập 4.22 sẽ yêu cầu chúng ta tìm đạo hàm của một hàm số, hoặc giải một phương trình, bất phương trình liên quan đến đạo hàm.
Giả sử bài tập 4.22 yêu cầu chúng ta tìm đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1. Chúng ta sẽ thực hiện các bước sau:
Khi giải bài tập về đạo hàm, cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức về đạo hàm, bạn có thể làm thêm các bài tập sau:
Bài tập 4.22 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài tập và đạt kết quả tốt trong môn Toán 12.