Logo Header
  1. Môn Toán
  2. Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.

Đề bài

Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.

Phương pháp giải - Xem chi tiếtGiải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức 1

Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.

Lời giải chi tiết

Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức 2

Ta có: O(0; 0; 0)

Vì OABC.O’A’B’C’ là hình hộp nên \(\overrightarrow {AA'} = \overrightarrow {OO'} \Rightarrow \left\{ \begin{array}{l}{x_{A'}} - {x_A} = {x_{O'}} - {x_O}\\{y_{A'}} - {y_A} = {y_{O'}} - {y_O}\\{z_{A'}} - {z_A} = {z_{O'}} - {z_O}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_{O'}} - {x_O} + {x_A} = 3\\{y_{A'}} = {y_{O'}} - {y_O} + {y_A} = 1\\{z_{A'}} = {z_{O'}} - {z_O} + {z_A} = 3\end{array} \right. \Rightarrow A'\left( {3;1;3} \right)\)

\(\overrightarrow {CC'} = \overrightarrow {OO'} \Rightarrow \left\{ \begin{array}{l}{x_{C'}} - {x_C} = {x_{O'}} - {x_O}\\{y_{C'}} - {y_C} = {y_{O'}} - {y_O}\\{z_{C'}} - {z_C} = {z_{O'}} - {z_O}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{C'}} = {x_{O'}} - {x_O} + {x_C} = 0\\{y_{C'}} = {y_{O'}} - {y_O} + {y_C} = 0\\{z_{C'}} = {z_{O'}} - {z_O} + {z_C} = 5\end{array} \right. \Rightarrow C'\left( {0;0;5} \right)\)

Vì ABCO là hình bình hành nên \(\overrightarrow {CB} = \overrightarrow {OA} \Rightarrow \left\{ \begin{array}{l}{x_B} + 1 = 2\\{y_B} - 2 = 3\\{z_B} - 3 = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_B} = 1\\{y_B} = 5\\{z_B} = 4\end{array} \right. \Rightarrow B\left( {1;5;4} \right)\)

Vì OABC.O’A’B’C’ là hình hộp nên \(\overrightarrow {BB'} = \overrightarrow {OO'} \Rightarrow \left\{ \begin{array}{l}{x_{B'}} - 1 = 1\\{y_{B'}} - 5 = - 2\\{z_{B'}} - 4 = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{B'}} = 2\\{y_{B'}} = 3\\{z_{B'}} = 6\end{array} \right. \Rightarrow B'\left( {2;3;6} \right)\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan

Bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc giải quyết các bài toán liên quan đến sự biến thiên của hàm số.

Phân tích đề bài

Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu của bài toán. Đề bài yêu cầu chúng ta thực hiện các thao tác gì? Dữ liệu nào được cung cấp? Chúng ta cần sử dụng kiến thức nào để giải quyết bài toán?

Lời giải chi tiết bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Để giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức, chúng ta thực hiện theo các bước sau:

  1. Bước 1: Xác định hàm số cần tìm đạo hàm.
  2. Bước 2: Áp dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số.
  3. Bước 3: Sử dụng đạo hàm để giải quyết các yêu cầu của bài toán.

(Ở đây sẽ là lời giải chi tiết của bài tập 2.39, bao gồm các bước giải, các phép tính và kết quả cuối cùng. Lời giải sẽ được trình bày một cách rõ ràng, dễ hiểu và có tính logic cao.)

Ví dụ minh họa

Để giúp bạn hiểu rõ hơn về cách giải bài tập 2.39, chúng ta sẽ xem xét một ví dụ minh họa:

(Ví dụ minh họa sẽ được trình bày một cách chi tiết, bao gồm đề bài, lời giải và kết quả cuối cùng.)

Lưu ý quan trọng

  • Khi tính đạo hàm, cần chú ý đến các quy tắc tính đạo hàm của các hàm số cơ bản.
  • Khi giải quyết các bài toán liên quan đến sự biến thiên của hàm số, cần sử dụng đạo hàm để tìm các điểm cực trị và khoảng đơn điệu của hàm số.
  • Luôn kiểm tra lại kết quả của mình để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
  • Bài tập 2.41 trang 75 SGK Toán 12 tập 1 - Kết nối tri thức
  • Bài tập 2.42 trang 75 SGK Toán 12 tập 1 - Kết nối tri thức

Kết luận

Bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập. Hy vọng rằng, với lời giải chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả.

Bảng tổng hợp các công thức đạo hàm thường gặp

Hàm sốĐạo hàm
y = c (c là hằng số)y' = 0
y = xny' = nxn-1
y = sinxy' = cosx
y = cosxy' = -sinx

Tài liệu, đề thi và đáp án Toán 12