Logo Header
  1. Môn Toán
  2. Giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập 5.15 trang 48 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường xoay quanh các kiến thức về đạo hàm, ứng dụng đạo hàm để khảo sát hàm số, hoặc các bài toán liên quan đến cực trị của hàm số.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 5.15, giúp các em học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1}:\frac{{x - 1}}{3} = \frac{{y - 3}}{1} = \frac{{z - 2}}{2}\) và \({\Delta _2}:\frac{{x - 1}}{3} = \frac{{y + 1}}{1} = \frac{z}{2}\). a) Chứng minh rằng \({\Delta _1}\) và \({\Delta _2}\) song song nhau. b) Viết phương trình mặt phẳng (P) chứa \({\Delta _1}\) và \({\Delta _2}\).

Đề bài

Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1}:\frac{{x - 1}}{3} = \frac{{y - 3}}{1} = \frac{{z - 2}}{2}\) và \({\Delta _2}:\frac{{x - 1}}{3} = \frac{{y + 1}}{1} = \frac{z}{2}\).

a) Chứng minh rằng \({\Delta _1}\) và \({\Delta _2}\) song song nhau.

b) Viết phương trình mặt phẳng (P) chứa \({\Delta _1}\) và \({\Delta _2}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để chứng minh: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\) và tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó:

\({\Delta _1}//{\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1}\not \in {\Delta _2}\).

Lời giải chi tiết

a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} \left( {3;1;2} \right)\) và đi qua điểm \(A\left( {1;3;2} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( {3;1;2} \right)\).

Vì \(\overrightarrow {{u_1}} = \overrightarrow {{u_2}} \) nên hai vectơ \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương.

Lại có: \(\frac{{1 - 1}}{3} \ne \frac{{3 + 1}}{1}\) nên điểm A không thuộc đường thẳng \({\Delta _2}\).

Do đó, \({\Delta _1}\) và \({\Delta _2}\) song song nhau.

b) Đường thẳng \({\Delta _2}\) đi qua điểm \(B\left( {1; - 1;0} \right)\)

Ta có: \(\overrightarrow {AB} \left( {0; - 4; - 2} \right)\) không cùng phương với \(\overrightarrow {{u_1}} \left( {3;1;2} \right)\).

Lại có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&2\\{ - 4}&{ - 2}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}2&3\\{ - 2}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}3&1\\0&{ - 4}\end{array}} \right|} \right) = \left( {6;6; - 12} \right)\)

Do đó, mặt phẳng (P) chứa \({\Delta _1}\) và \({\Delta _2}\) nhận \(\frac{1}{6}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {AB} } \right] = \left( {1;1; - 2} \right)\) là một vectơ pháp tuyến. Lại có, điểm \(A\left( {1;3;2} \right)\) thuộc mặt phẳng (P) nên phương trình mặt phẳng (P) là: \(x - 1 + y - 3 - 2\left( {z - 2} \right) = 0 \Leftrightarrow x + y - 2z = 0\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học Toán 12, đòi hỏi học sinh phải nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm. Dưới đây là hướng dẫn giải chi tiết bài tập này:

Phân tích đề bài

Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Thông thường, bài tập 5.15 sẽ yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải phương trình hoặc bất phương trình chứa đạo hàm.

Lời giải chi tiết

Để giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức, chúng ta sẽ thực hiện theo các bước sau:

  1. Bước 1: Xác định hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm bậc nhất của hàm số.
  3. Bước 3: Tìm các điểm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0.
  4. Bước 4: Lập bảng biến thiên của hàm số.
  5. Bước 5: Kết luận về sự biến thiên và cực trị của hàm số.

Ví dụ minh họa:

Giả sử bài tập 5.15 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2.

Bước 1: Hàm số cần khảo sát là y = x3 - 3x2 + 2.

Bước 2: Đạo hàm bậc nhất của hàm số là y' = 3x2 - 6x.

Bước 3: Giải phương trình y' = 0, ta được 3x2 - 6x = 0 => x(x - 2) = 0 => x = 0 hoặc x = 2.

Bước 4: Lập bảng biến thiên:

x-∞02+∞
y'+-+
y

Bước 5: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý khi giải bài tập

Khi giải bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức, các em cần lưu ý những điều sau:

  • Nắm vững các công thức tính đạo hàm.
  • Sử dụng đúng các phương pháp giải phương trình và bất phương trình.
  • Vẽ đúng bảng biến thiên để xác định sự biến thiên và cực trị của hàm số.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của bài tập

Bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức có ứng dụng rất lớn trong thực tế. Ví dụ, trong kinh tế, đạo hàm được sử dụng để tính toán chi phí biên, doanh thu biên và lợi nhuận biên. Trong vật lý, đạo hàm được sử dụng để tính toán vận tốc, gia tốc và các đại lượng liên quan đến chuyển động.

Tổng kết

Bài tập 5.15 trang 48 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết trên, các em học sinh sẽ giải bài tập này một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 12