Bài tập 6.6 trang 70 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích hàm số, tìm đạo hàm và sử dụng đạo hàm để khảo sát tính đơn điệu, cực trị của hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 6.6 trang 70 SGK Toán 12 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong một túi có một số chiếc kẹo cùng loại, chỉ khác màu, trong đó có 6 cái kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên một cái kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm một cái kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai cái kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu cái kẹo?
Đề bài
Trong một túi có một số chiếc kẹo cùng loại, chỉ khác màu, trong đó có 6 cái kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên một cái kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm một cái kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai cái kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu cái kẹo?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức nhân xác suất để tính: Với hai biến cố A, B bất kì ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\).
Lời giải chi tiết
Gọi số kẹo trong túi là n (cái, \(n \in \mathbb{N}*,n > 6\)), khi đó, số kẹo màu vàng trong túi là \(n - 6\) (cái).
Số cách chọn kẹo thứ nhất là n, số cách chọn kẹo thứ hai là \(n - 1\). Do đó, \(n\left( \Omega \right) = n\left( {n - 1} \right)\)
Gọi A là biến cố: “Lấy được viên kẹo thứ nhất màu cam”, B là biến cố: “Lấy được viên kẹo thứ hai màu cam”. Khi đó, biến cố AB “Lấy được hai viên kẹo màu cam”.
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{6.\left( {n - 1} \right)}}{{n\left( {n - 1} \right)}} = \frac{6}{n}\).
Vì lấy ra một cái kẹo màu cam ở lần thứ nhất nên trong túi còn lại \(n - 1\) cái kẹo, trong đó có 5 cái kẹo màu cam. Do đó, \(P\left( {B|A} \right) = \frac{5}{{n - 1}}\).
Ta có: \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{6}{n}.\frac{5}{{n - 1}} = \frac{{30}}{{n\left( {n - 1} \right)}}\)
Vì xác suất Hà lấy được cả hai cái kẹo màu cam là \(\frac{1}{3}\) nên ta có:
\(\frac{1}{3} = \frac{{30}}{{n\left( {n - 1} \right)}} \Rightarrow {n^2} - n - 90 = 0 \Rightarrow \left( {n - 10} \right)\left( {n + 9} \right) = 0 \Rightarrow \left[ \begin{array}{l}n = 10\left( {tm} \right)\\n = - 9\left( {ktm} \right)\end{array} \right.\)
Vậy trong túi có 10 cái kẹo.
Bài tập 6.6 trang 70 SGK Toán 12 tập 2 yêu cầu học sinh giải quyết một bài toán thực tế liên quan đến việc tối ưu hóa một đại lượng nào đó bằng cách sử dụng đạo hàm. Để giải bài tập này một cách hiệu quả, chúng ta cần thực hiện các bước sau:
Giả sử bài tập 6.6 yêu cầu tìm kích thước của một hình hộp chữ nhật có thể tích cho trước sao cho diện tích bề mặt nhỏ nhất. Chúng ta có thể giải bài tập này bằng cách:
Khi giải bài tập về đạo hàm, cần chú ý các điểm sau:
Để học tập và ôn luyện kiến thức về đạo hàm, các em có thể tham khảo các tài liệu sau:
Bài tập 6.6 trang 70 SGK Toán 12 tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết trên, các em học sinh sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.