Bài tập 3.2 trang 79 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 3.2 trang 79 SGK Toán 12 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Thu nhập theo tháng (đơn vị: triệu đồng) của người lao động ở hai nhà máy như sau: Tính mức thu nhập trung bình của người lao động ở hai nhà máy trên. Dựa vào khoảng tứ phân vị, hãy xác định xem mức thu nhập của người lao động ở nhà máy nào biến động nhiều hơn.
Đề bài
Thu nhập theo tháng (đơn vị: triệu đồng) của người lao động ở hai nhà máy như sau:
Tính mức thu nhập trung bình của người lao động ở hai nhà máy trên. Dựa vào khoảng tứ phân vị, hãy xác định xem mức thu nhập của người lao động ở nhà máy nào biến động nhiều hơn.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:
Cho mẫu số liệu ghép nhóm:
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).
+ Sử dụng kiến thức về khoảng tứ phân vị của mẫu số liệu ghép nhóm để tính: Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu là \({\Delta _Q}\), là hiệu số giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\).
Lời giải chi tiết
Ta có bảng số liệu với giá trị đại diện của nhóm là:
Mức thu nhập trung bình của người lao động nhà máy A là:
\(\frac{{6,5.20 + 9,5.35 + 12,5.45 + 15,5.35 + 18,5.20}}{{20 + 35 + 45 + 35 + 20}} = \frac{{25}}{2}\) (triệu đồng)
Mức thu nhập trung bình của người lao động nhà máy B là:
\(\frac{{6,5.17 + 9,5.23 + 12,5.30 + 15,5.23 + 18,5.17}}{{17 + 23 + 30 + 23 + 17}} = \frac{{25}}{2}\) (triệu đồng)
Nhà máy A: Ta có cỡ mẫu \(n = 155\). Giả sử \({x_1},{x_2},...,{x_{155}}\) là mức thu nhập của người lao động nhà máy A và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.
Vì \(\frac{n}{4} = 38,75\) và \(20 < 38,75 < 20 + 35\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {8;11} \right)\) và tứ phân vị thứ nhất là: \({Q_1} = 8 + \frac{{\frac{{155}}{4} - 20}}{{35}}.3 = \frac{{269}}{{28}}\)
Vì \(\frac{{3n}}{4} = 116,25\) và \(20 + 35 + 45 < 116,25 < 20 + 35 + 45 + 35\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {14;17} \right)\) và tứ phân vị thứ ba là: \({Q_3} = 14 + \frac{{\frac{{3.155}}{4} - \left( {20 + 35 + 45} \right)}}{{35}}.3 = \frac{{431}}{{28}}\)
Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_1}}} = \frac{{431}}{{28}} - \frac{{269}}{{28}} = \frac{{81}}{{14}}\)
Nhà máy B: Ta có cỡ mẫu \(n = 110\). Giả sử \({x_1},{x_2},...,{x_{110}}\) là mức thu nhập của người lao động nhà máy B và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm.
Vì \(\frac{n}{4} = 27,5\) và \(17 < 27,5 < 17 + 23\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \(\left[ {8;11} \right)\) và tứ phân vị thứ nhất là: \(Q{'_1} = 8 + \frac{{\frac{{110}}{4} - 17}}{{23}}.3 = \frac{{431}}{{46}}\)
Vì \(\frac{{3n}}{4} = 82,5\) và \(17 + 23 + 30 < 82,5 < 17 + 23 + 30 + 23\) nên nhóm chứa tứ phân vị thứ ba là nhóm \(\left[ {14;17} \right)\) và tứ phân vị thứ ba là: \({Q_3} = 14 + \frac{{\frac{{3.110}}{4} - \left( {17 + 23 + 30} \right)}}{{23}}.3 = \frac{{719}}{{46}}\)
Khoảng biến thiên của mẫu số liệu ghép nhóm là: \({\Delta _{{Q_2}}} = \frac{{719}}{{46}} - \frac{{431}}{{46}} = \frac{{144}}{{23}}\)
Vì \({\Delta _{{Q_1}}} < {\Delta _{{Q_2}}}\) nên mức thu nhập của người lao động nhà máy B biến động nhiều hơn.
Bài tập 3.2 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Để giải bài tập này, học sinh cần nắm vững các khái niệm và công thức liên quan đến đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài tập 3.2 trang 79 SGK Toán 12 tập 1, yêu cầu thường là tìm đạo hàm của một hàm số, hoặc khảo sát hàm số bằng cách sử dụng đạo hàm. Học sinh cần xác định rõ hàm số cần khảo sát, và các yêu cầu cụ thể của bài toán.
Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2. Ta thực hiện các bước sau:
Khoảng | x < 0 | 0 < x < 2 | x > 2 |
---|---|---|---|
y' | + | - | + |
y | Đồng biến | Nghịch biến | Đồng biến |
Khi giải bài tập 3.2 trang 79 SGK Toán 12 tập 1, học sinh cần lưu ý một số điểm sau:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài tập 3.2 trang 79 SGK Toán 12 tập 1 - Kết nối tri thức một cách hiệu quả. Chúc các em học tốt!
Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm và ứng dụng của đạo hàm, các em có thể tham khảo các bài tập tương tự trong SGK Toán 12 tập 1 - Kết nối tri thức, hoặc trên các trang web học toán online uy tín.