Bài tập 5.4 trang 39 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 5.4, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm \(M\left( {2;3; - 1} \right)\) song song với trục Ox và vuông góc với mặt phẳng \(\left( Q \right):x + 2y - 3z + 1 = 0\).
Đề bài
Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm \(M\left( {2;3; - 1} \right)\) song song với trục Ox và vuông góc với mặt phẳng \(\left( Q \right):x + 2y - 3z + 1 = 0\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:
+ Tìm vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
Lời giải chi tiết
Gọi (P) là mặt phẳng đi qua điểm \(M\left( {2;3; - 1} \right)\) song song với trục Ox và vuông góc với mặt phẳng (Q).
Ta có: \(\overrightarrow {{n_Q}} \left( {1;2; - 3} \right)\), trục Ox có một vectơ chỉ phương là \(\overrightarrow {{n_1}} \left( {1;0;0} \right)\).
\(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_1}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 3}\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\1&0\end{array}} \right|} \right) = \left( {0; - 3; - 2} \right)\)
Vì (P) song song với trục Ox và vuông góc với (Q) nên (P) nhận \(\left[ {\overrightarrow {{n_Q}} ,\overrightarrow {{n_1}} } \right] = \left( {0; - 3; - 2} \right)\) làm một vectơ pháp tuyến.
Mà (P) là mặt phẳng đi qua điểm \(M\left( {2;3; - 1} \right)\) nên phương trình (P) là:
\(0\left( {x - 2} \right) - 3\left( {y - 3} \right) - 2\left( {z + 1} \right) = 0 \Leftrightarrow 3y + 2z - 7 = 0\)
Bài tập 5.4 trang 39 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bài toán này thường liên quan đến việc tìm đạo hàm của hàm số, xét dấu đạo hàm để xác định tính đơn điệu của hàm số, và tìm cực trị của hàm số.
Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu của bài toán. Điều này bao gồm việc xác định hàm số cần xét, khoảng xác định của hàm số, và các yêu cầu cụ thể của bài toán (ví dụ: tìm đạo hàm, xét dấu đạo hàm, tìm cực trị).
Để giải bài tập 5.4 trang 39 SGK Toán 12 tập 2 - Kết nối tri thức, chúng ta có thể áp dụng các phương pháp sau:
(Giả sử bài tập 5.4 là một bài toán cụ thể, phần này sẽ trình bày lời giải chi tiết của bài toán đó. Ví dụ:)
Bài tập: Tìm cực trị của hàm số y = x3 - 3x2 + 2.
Lời giải:
Để hiểu rõ hơn về phương pháp giải bài tập 5.4, chúng ta hãy xem xét một ví dụ minh họa khác. (Ví dụ khác sẽ được trình bày tương tự như ví dụ trên)
Khi giải bài tập về đạo hàm, cần lưu ý các điểm sau:
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự sau:
Bài tập 5.4 trang 39 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.