Bài tập 6.2 trang 70 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường xoay quanh các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 6.2, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Cho \(P\left( A \right) = 0,2;P\left( B \right) = 0,51;P\left( {B|A} \right) = 0,8\). Tính \(P\left( {A|B} \right)\).
Đề bài
Cho \(P\left( A \right) = 0,2;P\left( B \right) = 0,51;P\left( {B|A} \right) = 0,8\). Tính \(P\left( {A|B} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức tính xác suất có điều kiện để tính: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\)
Sử dụng kiến thức về công thức nhân xác suất để tính: Với hai biến cố A, B bất kì ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\)
Lời giải chi tiết
Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,8}}{{0,51}} = \frac{{16}}{{51}}\)
Bài tập 6.2 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán cụ thể. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Giả sử bài tập 6.2 yêu cầu tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x) = x3 - 3x2 + 2 trên đoạn [-1; 3].
Bước 1: Tính đạo hàm
f'(x) = 3x2 - 6x
Bước 2: Tìm điểm cực trị
3x2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
Bước 3: Tính đạo hàm cấp hai
f''(x) = 6x - 6
Bước 4: Xác định tính chất của điểm cực trị
Bước 5: Tính giá trị của hàm số tại các điểm cực trị và đầu mút của đoạn
Kết luận:
Giá trị lớn nhất của hàm số trên đoạn [-1; 3] là 2 (đạt được tại x = 0 và x = 3).
Giá trị nhỏ nhất của hàm số trên đoạn [-1; 3] là -2 (đạt được tại x = -1 và x = 2).
Ngoài bài tập 6.2, SGK Toán 12 tập 2 - Kết nối tri thức còn nhiều bài tập khác liên quan đến đạo hàm và ứng dụng của đạo hàm. Các dạng bài tập thường gặp bao gồm:
Để giải các bài tập này, cần nắm vững các kiến thức về đạo hàm, quy tắc tính đạo hàm, điều kiện cực trị và phương pháp khảo sát hàm số.
Hy vọng với hướng dẫn chi tiết này, các em học sinh có thể tự tin giải bài tập 6.2 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức và các bài tập tương tự. Chúc các em học tập tốt!