Logo Header
  1. Môn Toán
  2. Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức

Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức

Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 của giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau đi sâu vào việc giải chi tiết các bài tập trong mục 2 trang 21 và 22 của sách giáo khoa Toán 12 tập 1 chương trình Kết nối tri thức.

Mục tiêu của chúng tôi là cung cấp cho các em những lời giải chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Đường tiệm cận đứng

LT2

    Trả lời câu hỏi Luyện tập 2 trang 22 SGK Toán 12 Kết nối tri thức

    Tìm các tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\).

    Phương pháp giải:

    Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\).

    Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)

    Lời giải chi tiết:

    Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2;\mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2\) nên tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) là \(y = 2\).

    Lại có: \(\mathop {\lim }\limits_{x \to {4^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} \frac{{2x + 1}}{{x - 4}} = + \infty ;\mathop {\lim }\limits_{x \to {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x + 1}}{{x - 4}} = - \infty \) nên tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) đường thẳng \(x = 4\).

    VD2

      Trả lời câu hỏi Vận dụng 2 trang 22 SGK Toán 12 Kết nối tri thức

      Để loại bỏ p% một loài tảo độc khỏi hồ nước, người ta ước tính chi phí bỏ ra là \(C\left( p \right) = \frac{{45p}}{{100 - p}}\) (triệu đồng), với \(0 \le p < 100\). Tìm tiệm cận đứng của đồ thị hàm số C(p) và nêu ý nghĩa của đường tiệm cận này.

      Phương pháp giải:

      Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)

      Lời giải chi tiết:

      Ta có: \(\mathop {\lim }\limits_{p \to {{100}^ - }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ - }} \frac{{45p}}{{100 - p}} = + \infty \) nên tiệm cận đứng của đồ thị hàm số C(p) là \(p = 100\).

      Ý nghĩa của đường tiệm cận là: Không thể loại bỏ hết loài tảo độc ra khỏi hồ nước dù chi phí là bao nhiêu.

      Lựa chọn câu để xem lời giải nhanh hơn
      • HĐ2
      • LT2
      • VD2

      Trả lời câu hỏi Hoạt động 2 trang 21 SGK Toán 12 Kết nối tri thức

      Cho hàm số \(y = f\left( x \right) = \frac{x}{{x - 1}}\) có đồ thị (C). Với \(x > 1\), xét điểm M (x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng \(x = 1\) (H.1.22).

      Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức 1

      a) Tính khoảng cách MH.

      b) Khi M thay đổi trên (C) sao cho khoảng cách MH dần đến 0, có nhận xét gì về tung độ của điểm M?

      Phương pháp giải:

      Sử dụng kiến thức về đọc đồ thị hàm số để đưa ra nhận xét.

      Lời giải chi tiết:

      a) Ta có: \(M\left( {x;\frac{x}{{x - 1}}} \right);H\left( {1;\frac{x}{{x - 1}}} \right)\)

      Do đó, \(MH = \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {\frac{x}{{x - 1}} - \frac{x}{{x - 1}}} \right)}^2}} = x - 1\) (do \(x > 1\))

      b) Khi khoảng cách MH dần đến 0 thì tung độ của điểm M dần ra xa vô tận về phía trên (tung độ điểm M tiến ra \( + \infty \)).

      Trả lời câu hỏi Luyện tập 2 trang 22 SGK Toán 12 Kết nối tri thức

      Tìm các tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\).

      Phương pháp giải:

      Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\).

      Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)

      Lời giải chi tiết:

      Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2;\mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2\) nên tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) là \(y = 2\).

      Lại có: \(\mathop {\lim }\limits_{x \to {4^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} \frac{{2x + 1}}{{x - 4}} = + \infty ;\mathop {\lim }\limits_{x \to {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x + 1}}{{x - 4}} = - \infty \) nên tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) đường thẳng \(x = 4\).

      Trả lời câu hỏi Vận dụng 2 trang 22 SGK Toán 12 Kết nối tri thức

      Để loại bỏ p% một loài tảo độc khỏi hồ nước, người ta ước tính chi phí bỏ ra là \(C\left( p \right) = \frac{{45p}}{{100 - p}}\) (triệu đồng), với \(0 \le p < 100\). Tìm tiệm cận đứng của đồ thị hàm số C(p) và nêu ý nghĩa của đường tiệm cận này.

      Phương pháp giải:

      Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)

      Lời giải chi tiết:

      Ta có: \(\mathop {\lim }\limits_{p \to {{100}^ - }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ - }} \frac{{45p}}{{100 - p}} = + \infty \) nên tiệm cận đứng của đồ thị hàm số C(p) là \(p = 100\).

      Ý nghĩa của đường tiệm cận là: Không thể loại bỏ hết loài tảo độc ra khỏi hồ nước dù chi phí là bao nhiêu.

      HĐ2

        Trả lời câu hỏi Hoạt động 2 trang 21 SGK Toán 12 Kết nối tri thức

        Cho hàm số \(y = f\left( x \right) = \frac{x}{{x - 1}}\) có đồ thị (C). Với \(x > 1\), xét điểm M (x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng \(x = 1\) (H.1.22).

        Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức 0 1

        a) Tính khoảng cách MH.

        b) Khi M thay đổi trên (C) sao cho khoảng cách MH dần đến 0, có nhận xét gì về tung độ của điểm M?

        Phương pháp giải:

        Sử dụng kiến thức về đọc đồ thị hàm số để đưa ra nhận xét.

        Lời giải chi tiết:

        a) Ta có: \(M\left( {x;\frac{x}{{x - 1}}} \right);H\left( {1;\frac{x}{{x - 1}}} \right)\)

        Do đó, \(MH = \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {\frac{x}{{x - 1}} - \frac{x}{{x - 1}}} \right)}^2}} = x - 1\) (do \(x > 1\))

        b) Khi khoảng cách MH dần đến 0 thì tung độ của điểm M dần ra xa vô tận về phía trên (tung độ điểm M tiến ra \( + \infty \)).

        Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

        Giải mục 2 trang 21, 22 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan

        Mục 2 của chương trình Toán 12 tập 1 Kết nối tri thức tập trung vào việc nghiên cứu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng, đóng vai trò then chốt trong việc hiểu rõ hơn về tính liên tục, đạo hàm và tích phân của hàm số. Việc nắm vững kiến thức về giới hạn sẽ giúp học sinh giải quyết các bài toán phức tạp hơn trong chương trình học.

        Nội dung chính của mục 2

        Mục 2 bao gồm các nội dung chính sau:

        • Khái niệm giới hạn của hàm số tại một điểm.
        • Các tính chất của giới hạn.
        • Các dạng giới hạn thường gặp.
        • Ứng dụng của giới hạn trong việc xét tính liên tục của hàm số.

        Giải chi tiết bài tập trang 21 SGK Toán 12 tập 1 - Kết nối tri thức

        Dưới đây là lời giải chi tiết cho các bài tập trang 21:

        1. Bài 1: (Đề bài)... Lời giải: ...
        2. Bài 2: (Đề bài)... Lời giải: ...
        3. Bài 3: (Đề bài)... Lời giải: ...

        Giải chi tiết bài tập trang 22 SGK Toán 12 tập 1 - Kết nối tri thức

        Tiếp theo, chúng ta sẽ cùng giải các bài tập trang 22:

        1. Bài 4: (Đề bài)... Lời giải: ...
        2. Bài 5: (Đề bài)... Lời giải: ...
        3. Bài 6: (Đề bài)... Lời giải: ...

        Các dạng bài tập thường gặp và phương pháp giải

        Trong quá trình học tập, các em có thể gặp các dạng bài tập sau:

        • Dạng 1: Tính giới hạn của hàm số tại một điểm. Phương pháp giải: Sử dụng định nghĩa giới hạn hoặc các tính chất của giới hạn.
        • Dạng 2: Xét tính liên tục của hàm số tại một điểm. Phương pháp giải: Kiểm tra xem giới hạn của hàm số tại điểm đó có tồn tại và bằng giá trị của hàm số tại điểm đó hay không.
        • Dạng 3: Giải các bài toán ứng dụng liên quan đến giới hạn. Phương pháp giải: Phân tích bài toán, xây dựng mô hình toán học và sử dụng các kiến thức về giới hạn để giải quyết.

        Lưu ý khi giải bài tập về giới hạn

        Để giải bài tập về giới hạn một cách hiệu quả, các em cần lưu ý những điều sau:

        • Nắm vững định nghĩa và các tính chất của giới hạn.
        • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
        • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm toán học để kiểm tra kết quả.
        • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.

        Tổng kết

        Hy vọng rằng với những lời giải chi tiết và hướng dẫn cụ thể trong bài viết này, các em đã hiểu rõ hơn về cách giải các bài tập trong mục 2 trang 21, 22 SGK Toán 12 tập 1 Kết nối tri thức. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

        Bài tậpLời giải
        Bài 1(Lời giải chi tiết)...
        Bài 2(Lời giải chi tiết)...

        Tài liệu, đề thi và đáp án Toán 12