Bài tập 5.26 trang 59 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường xoay quanh các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 5.26, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Trong không gian Oxyz, viết phương trình của mặt cầu (S) có tâm \(I\left( { - 2;0;5} \right)\) và bán kính \(R = 2\).
Đề bài
Trong không gian Oxyz, viết phương trình của mặt cầu (S) có tâm \(I\left( { - 2;0;5} \right)\) và bán kính \(R = 2\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để viết phương trình mặt cầu: Trong không gian Oxyz, mặt cầu (S) tâm \(I\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\), bán kính R có phương trình \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
Mặt cầu (S) tâm \(I\left( { - 2;0;5} \right)\), bán kính \(R = 2\) có phương trình là:
\({\left( {x + 2} \right)^2} + {y^2} + {\left( {z - 5} \right)^2} = 4\)
Bài tập 5.26 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm và định lý liên quan đến đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Thông thường, đề bài sẽ cung cấp một hàm số và yêu cầu tìm các yếu tố như cực trị, khoảng đơn điệu, hoặc giải phương trình, bất phương trình liên quan đến hàm số đó. Việc phân tích đề bài giúp chúng ta xác định được phương pháp giải phù hợp và tránh những sai sót không đáng có.
Để giải bài tập 5.26 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức, chúng ta có thể áp dụng các phương pháp sau:
Giả sử đề bài yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2. Chúng ta sẽ thực hiện các bước sau:
Vậy hàm số có điểm cực đại là (0, 2) và điểm cực tiểu là (2, -2).
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 12 tập 2 - Kết nối tri thức, hoặc tìm kiếm trên các trang web học toán online.
Bài tập 5.26 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bằng cách nắm vững các khái niệm và phương pháp giải, cùng với việc luyện tập thường xuyên, các em học sinh có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn Toán.