Đây là một trong những chủ đề quan trọng của chương trình Toán 12, giúp học sinh hiểu rõ về tính chất của hàm số và ứng dụng trong giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp đầy đủ lý thuyết, ví dụ minh họa và bài tập thực hành để bạn nắm vững kiến thức này.
Tại giaitoan.edu.vn, chúng tôi cam kết mang đến cho bạn trải nghiệm học toán online tốt nhất với nội dung được trình bày rõ ràng, dễ hiểu và cập nhật theo chương trình Kết nối tri thức.
1. Định nghĩa Khái niệm GTLN, GTNN của hàm số
1. Định nghĩa
Khái niệm GTLN, GTNN của hàm số
Cho hàm số y = f(x) xác định trên tập D. - Số M là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) \( \le \) M với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = M. Kí hiệu M = \(\mathop {\max }\limits_{x \in D} f(x)\) hoặc M = $\underset{D}{\mathop{\max }}\,f(x)$ - Số m là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x) \( \ge \) m với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = m. Kí hiệu m = \(\mathop {\min }\limits_{x \in D} f(x)\) hoặc m = \(\mathop {\min }\limits_D f(x)\) |
Ví dụ: Tìm GTLN, GTNN của hàm số \(y = f(x) = \sqrt {1 - {x^2}} \)
Tập xác định của hàm số là \(\left[ { - 1;1} \right]\)
Ta có:
\(f(x) = \sqrt {1 - {x^2}} \) \( \ge \) 0; dấu bằng xảy ra khi \(1 - {x^2} = 0\), tức x = -1 hoặc x = 1.
Do đó \(\mathop {\min }\limits_{x \in \left[ { - 1;1} \right]} f(x) = f( - 1) = f(1) = 0\)
\(f(x) = \sqrt {1 - {x^2}} \) \( \le 1\); dấu bằng xảy ra khi \(1 - {x^2} = 1\), tức x = 0.
Do đó \(\mathop {\max }\limits_{x \in \left[ { - 1;1} \right]} f(x) = f(0) = 1\)
2. Cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn
Giả sử y = f(x) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a;b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm f’(x) = 0. Các bước tìm GTLN và GTNN của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\):
M = \(\mathop {\max }\limits_{\left[ {a;b} \right]} f(x)\); m = \(\mathop {\min }\limits_{\left[ {a;b} \right]} f(x)\) |
Ví dụ: Tìm GTLN và GTNN của hàm số \(y = {x^4} - 4{x^2} + 3\) trên đoạn \(\left[ {0;4} \right]\)
Ta có: \(y' = 4{x^3} - 8x = 4x({x^2} - 2);y' = 0 \Leftrightarrow x = 0\) hoặc \(x = \sqrt 2 \) (vì \(x \in \left[ {0;4} \right]\))
y(0) = 3; y(4) = 195; y(\(\sqrt 2 \)) = -1
Do đó: \(\mathop {\max }\limits_{\left[ {0;4} \right]} y = y(4) = 195\); \(\mathop {\min }\limits_{\left[ {0;4} \right]} y = y(\sqrt 2 ) = - 1\)
Trong chương trình Toán 12, việc nắm vững lý thuyết về giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của hàm số là vô cùng quan trọng. Nó không chỉ giúp học sinh giải quyết các bài toán trong sách giáo khoa mà còn là nền tảng cho việc ứng dụng vào các lĩnh vực khác.
Cho hàm số f(x) xác định trên tập D. Số M được gọi là giá trị lớn nhất của hàm số f(x) trên D nếu f(x) ≤ M với mọi x thuộc D và tồn tại ít nhất một x0 thuộc D sao cho f(x0) = M. Số m được gọi là giá trị nhỏ nhất của hàm số f(x) trên D nếu f(x) ≥ m với mọi x thuộc D và tồn tại ít nhất một x0 thuộc D sao cho f(x0) = m.
Để tìm GTLN và GTNN của hàm số f(x) trên một khoảng hoặc đoạn, ta thường thực hiện các bước sau:
Ví dụ 1: Tìm GTLN và GTNN của hàm số f(x) = x2 - 4x + 3 trên đoạn [0; 3].
Giải:
Khi tìm GTLN và GTNN của hàm số, cần chú ý đến tập xác định của hàm số và các điểm không xác định đạo hàm. Ngoài ra, cần kiểm tra kỹ các điều kiện để đảm bảo kết quả tìm được là chính xác.
Để củng cố kiến thức, bạn có thể thực hành giải các bài tập sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức hữu ích về lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Kết nối tri thức. Chúc bạn học tập tốt!