Bài tập 2.35 trang 74 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Đề bài
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.
Lời giải chi tiết
Gọi O là tâm hình chữ nhật ABCD. Khi đó, O là trung điểm của AC, BD.
Suy ra \(\overrightarrow {OC} = - \overrightarrow {OA} ,\overrightarrow {OD} = - \overrightarrow {OB} \)
Ta có: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OC} = 2\overrightarrow {SO} + \left( {\overrightarrow {OA} - \overrightarrow {OA} } \right) = 2\overrightarrow {SO} \)
\(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OD} = 2\overrightarrow {SO} + \left( {\overrightarrow {OB} - \overrightarrow {OB} } \right) = 2\overrightarrow {SO} \)
Do đó, \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)
Bài tập 2.35 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = -2.
Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức về đạo hàm, các loại điểm cực trị và cách xác định dấu của đạo hàm cấp một. Ngoài ra, việc thực hành giải nhiều bài tập tương tự cũng giúp học sinh rèn luyện kỹ năng và nâng cao khả năng giải quyết vấn đề.
Đạo hàm không chỉ là một công cụ quan trọng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật,... Ví dụ, đạo hàm có thể được sử dụng để tính vận tốc, gia tốc của một vật thể chuyển động, hoặc để tìm điểm tối ưu trong một bài toán tối ưu hóa.
Để củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm, học sinh có thể tham khảo các bài tập tương tự sau:
Bài tập 2.35 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết trên, các em học sinh sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12.