Bài tập 4.23 trang 27 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 4.23, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hàm số f(x) có đạo hàm f’(x) liên tục trên \(\mathbb{R}\), \(f\left( 1 \right) = 16\) và \(\int\limits_1^3 {f'\left( x \right)dx} = 4\). Khi đó, giá trị của f(3) bằng A. 20. B. 16. C. 12. D. 10.
Đề bài
Cho hàm số f(x) có đạo hàm f’(x) liên tục trên \(\mathbb{R}\), \(f\left( 1 \right) = 16\) và \(\int\limits_1^3 {f'\left( x \right)dx} = 4\). Khi đó, giá trị của f(3) bằng
A. 20.
B. 16.
C. 12.
D. 10.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để tính: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.
Lời giải chi tiết
Vì \(\int\limits_1^3 {f'\left( x \right)dx} = 4\) nên \(f\left( 3 \right) - f\left( 1 \right) = 4\), suy ra: \(f\left( 3 \right) = 4 + f\left( 1 \right) = 4 + 16 = 20\)
Chọn A
Bài tập 4.23 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về đạo hàm của hàm số. Bài toán này thường được sử dụng để kiểm tra khả năng vận dụng kiến thức vào giải quyết các bài toán thực tế.
Bài tập 4.23 thường có dạng như sau: Cho một hàm số y = f(x). Tìm đạo hàm f'(x) và sử dụng đạo hàm để giải quyết một bài toán cụ thể, ví dụ như tìm cực trị, khoảng đơn điệu, hoặc giải phương trình.
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm f'(x) và xác định các điểm cực trị của hàm số.
Giải:
Để học tốt Toán 12 và giải quyết các bài tập như bài tập 4.23, các em có thể tham khảo các tài liệu sau:
Bài tập 4.23 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng, đòi hỏi học sinh phải nắm vững kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày ở trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.