Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Chúng tôi giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán trong sách giáo khoa.
Mục 2 trang 45 SGK Toán 12 tập 2 - Kết nối tri thức là một phần quan trọng trong chương trình học. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết để bạn hiểu rõ hơn về nội dung này.
HAI ĐƯỜNG THẲNG VUÔNG GÓC
Trả lời câu hỏi Hoạt động 5 trang 45 SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\).
a) Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau khi và chỉ khi giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) có mối quan hệ gì?
b) Tìm điều kiện đối với \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) để \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.
Phương pháp giải:
Sử dụng kiến thức về giá của vectơ trong không gian tìm mối quan hệ: Đường thẳng đi qua điểm đầu và điểm cuối của vectơ được gọi là giá của vectơ.
Lời giải chi tiết:
a) Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau khi và chỉ khi giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) vuông góc với nhau.
b) Nếu \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau thì giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) vuông góc với nhau. Khi đó, \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Rightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
Trả lời câu hỏi Vận dụng 2 trang 45 SGK Toán 12 Kết nối tri thức
Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó tương ứng thuộc hai đường thẳng: \({\Delta _1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 0\end{array} \right.;{\Delta _2}:\left\{ \begin{array}{l}x = 1 - 2s\\y = 2s\\z = 1\end{array} \right.\). Hỏi hai con đường trên có vuông góc với nhau hay không?
Phương pháp giải:
Sử dụng kiến thức về điều kiện để hai đường thẳng vuông góc: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\)
Lời giải chi tiết:
Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} \left( {1;1;0} \right)\)
Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} \left( { - 2;2;0} \right)\)
Vì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 1.\left( { - 2} \right) + 1.2 + 0.0 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.
Do đó, hai con đường trên vuông góc với nhau.
Trả lời câu hỏi Hoạt động 5 trang 45 SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\).
a) Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau khi và chỉ khi giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) có mối quan hệ gì?
b) Tìm điều kiện đối với \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) để \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.
Phương pháp giải:
Sử dụng kiến thức về giá của vectơ trong không gian tìm mối quan hệ: Đường thẳng đi qua điểm đầu và điểm cuối của vectơ được gọi là giá của vectơ.
Lời giải chi tiết:
a) Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau khi và chỉ khi giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) vuông góc với nhau.
b) Nếu \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau thì giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) vuông góc với nhau. Khi đó, \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Rightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
Trả lời câu hỏi Luyện tập 7 trang 45 SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\). Hỏi đường thẳng \(\Delta \) có vuông góc với trục Oz không?
Phương pháp giải:
Sử dụng kiến thức về hai đường thẳng vuông góc với nhau để chứng minh: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
Lời giải chi tiết:
Đường thẳng \(\Delta \) có một vectơ chỉ phương là \(\overrightarrow u \left( {2;1; - 1} \right)\). Trục Oz có một vectơ chỉ phương là \(\overrightarrow k = \left( {0;0;1} \right)\).
Vì \(2.0 + 1.0 - 1.1 = - 1 \ne 0\) nên đường thẳng \(\Delta \) không vuông góc với trục Oz.
Trả lời câu hỏi Vận dụng 2 trang 45 SGK Toán 12 Kết nối tri thức
Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó tương ứng thuộc hai đường thẳng: \({\Delta _1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 0\end{array} \right.;{\Delta _2}:\left\{ \begin{array}{l}x = 1 - 2s\\y = 2s\\z = 1\end{array} \right.\). Hỏi hai con đường trên có vuông góc với nhau hay không?
Phương pháp giải:
Sử dụng kiến thức về điều kiện để hai đường thẳng vuông góc: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\)
Lời giải chi tiết:
Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} \left( {1;1;0} \right)\)
Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương là \(\overrightarrow {{u_2}} \left( { - 2;2;0} \right)\)
Vì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 1.\left( { - 2} \right) + 1.2 + 0.0 = 0\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau.
Do đó, hai con đường trên vuông góc với nhau.
Trả lời câu hỏi Luyện tập 7 trang 45 SGK Toán 12 Kết nối tri thức
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\). Hỏi đường thẳng \(\Delta \) có vuông góc với trục Oz không?
Phương pháp giải:
Sử dụng kiến thức về hai đường thẳng vuông góc với nhau để chứng minh: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
Lời giải chi tiết:
Đường thẳng \(\Delta \) có một vectơ chỉ phương là \(\overrightarrow u \left( {2;1; - 1} \right)\). Trục Oz có một vectơ chỉ phương là \(\overrightarrow k = \left( {0;0;1} \right)\).
Vì \(2.0 + 1.0 - 1.1 = - 1 \ne 0\) nên đường thẳng \(\Delta \) không vuông góc với trục Oz.
Mục 2 trang 45 SGK Toán 12 tập 2 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này, học sinh cần nắm vững các kiến thức lý thuyết liên quan, các định nghĩa, định lý và công thức đã học. Việc hiểu rõ bản chất của vấn đề là yếu tố then chốt để tìm ra phương pháp giải phù hợp.
Để hiểu rõ hơn về Mục 2 trang 45, chúng ta cần xác định chính xác nội dung mà nó đề cập đến. Thông thường, mục này có thể bao gồm các bài tập về:
Để giải các bài tập trong Mục 2 trang 45 SGK Toán 12 tập 2 - Kết nối tri thức một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài tập: Tính đạo hàm của hàm số y = sin(2x + 1).
Giải:
Sử dụng công thức đạo hàm của hàm hợp: (u(v(x)))' = u'(v(x)) * v'(x).
Đặt u(v) = sin(v) và v(x) = 2x + 1.
Khi đó, u'(v) = cos(v) và v'(x) = 2.
Vậy, y' = cos(2x + 1) * 2 = 2cos(2x + 1).
Khi giải các bài tập Toán 12, đặc biệt là các bài tập về đạo hàm và ứng dụng đạo hàm, bạn cần chú ý đến các điểm sau:
Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:
Giải mục 2 trang 45 SGK Toán 12 tập 2 - Kết nối tri thức đòi hỏi sự nắm vững kiến thức lý thuyết và khả năng áp dụng các phương pháp giải phù hợp. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài tập Toán 12.