Logo Header
  1. Môn Toán
  2. Giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả, giúp bạn nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.

Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là A. \(M = 6\). B. \(M = 7\). C. \(M = \frac{{19}}{3}\). D. \(M = \frac{{20}}{3}\).

Đề bài

Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là

A. \(M = 6\).

B. \(M = 7\).

C. \(M = \frac{{19}}{3}\).

D. \(M = \frac{{20}}{3}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về cách tìm giá trị lớn nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M trong các số trên. Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết

Ta có: \(y' = \frac{{\left( {{x^2} + 3} \right)'\left( {x - 1} \right) - {x^2} - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2x\left( {x - 1} \right) - {x^2} - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{\left( {x + 1} \right)\left( {x - 3} \right)}}{{{{\left( {x - 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\left( {TM} \right)\\x = - 1\left( {KTM} \right)\end{array} \right.\)

Ta có: \(y\left( 2 \right) = 7,y\left( 4 \right) = \frac{{19}}{3},y\left( 3 \right) = 6\). Do đó, \(M = \mathop {\max }\limits_{\left[ {2;4} \right]} y = y\left( 2 \right) = 7\)

Chọn B.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

Bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học khác ở bậc đại học.

Nội dung bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập 2 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Phương pháp giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Để giải quyết bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức một cách hiệu quả, bạn cần:

  1. Nắm vững các công thức đạo hàm cơ bản.
  2. Hiểu rõ các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp).
  3. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  4. Phân tích kỹ đề bài để xác định đúng yêu cầu và phương pháp giải phù hợp.

Lời giải chi tiết bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Dưới đây là lời giải chi tiết cho từng phần của bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức:

Bài tập 2.1

Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1 tại x = 2.

Lời giải:

f'(x) = 3x2 - 4x + 5

f'(2) = 3(2)2 - 4(2) + 5 = 12 - 8 + 5 = 9

Vậy, đạo hàm của hàm số f(x) tại x = 2 là 9.

Bài tập 2.2

Đề bài: Tìm đạo hàm của hàm số y = sin(2x) + cos(x).

Lời giải:

y' = 2cos(2x) - sin(x)

Vậy, đạo hàm của hàm số y là y' = 2cos(2x) - sin(x).

Bài tập 2.3

Đề bài: Cho hàm số y = x4 - 4x3 + 6x2 - 4x + 1. Tìm các điểm cực trị của hàm số.

Lời giải:

y' = 4x3 - 12x2 + 12x - 4 = 4(x3 - 3x2 + 3x - 1) = 4(x - 1)3

y' = 0 khi x = 1

Xét dấu y':

  • Với x < 1, y' < 0 (hàm số nghịch biến)
  • Với x > 1, y' > 0 (hàm số đồng biến)

Vậy, hàm số có điểm cực tiểu tại x = 1, giá trị cực tiểu là y(1) = 0.

Lưu ý khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, bạn cần chú ý:

  • Kiểm tra kỹ các công thức đạo hàm.
  • Áp dụng đúng quy tắc tính đạo hàm.
  • Biết cách phân tích và đơn giản biểu thức đạo hàm.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tổng kết

Bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn khi giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 12