Logo Header
  1. Môn Toán
  2. Giải bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 1.35 trang 42 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Cho hàm số \(y = f\left( x \right)\) thỏa mãn: \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\). Khẳng định nào sau đây là đúng? A. Đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số. B. Đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số. C. Đường thẳng \(y = 1\) là tiệm

Đề bài

Cho hàm số \(y = f\left( x \right)\) thỏa mãn: \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\). Khẳng định nào sau đây là đúng?

A. Đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

B. Đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

C. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

D. Đường thẳng \(x = 2\) là tiệm cận ngang của đồ thị hàm số.

Phương pháp giải - Xem chi tiếtGiải bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\).

Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)

Lời giải chi tiết

Vì \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\), \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số, vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\) nên đồ thị hàm số \(y = f\left( x \right)\) không có tiệm cận đứng.

Chọn B

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm cấp một:
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm đạo hàm bằng không:
  4. f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Xác định dấu của đạo hàm cấp một trên các khoảng xác định:
    • Khoảng (-∞; 0): Chọn x = -1, f'(-1) = 3(-1)2 - 6(-1) = 9 > 0. Hàm số đồng biến.
    • Khoảng (0; 2): Chọn x = 1, f'(1) = 3(1)2 - 6(1) = -3 < 0. Hàm số nghịch biến.
    • Khoảng (2; +∞): Chọn x = 3, f'(3) = 3(3)2 - 6(3) = 9 > 0. Hàm số đồng biến.
  6. Kết luận:
  7. Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

    Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = -2.

Lưu ý:

Để giải quyết bài toán này một cách chính xác, học sinh cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị của hàm số và cách xác định dấu của đạo hàm cấp một.

Ứng dụng của đạo hàm trong giải bài tập

Đạo hàm là một công cụ mạnh mẽ trong việc giải quyết các bài toán liên quan đến sự biến thiên của hàm số, tìm cực trị, điểm uốn, và ứng dụng trong các lĩnh vực khác như vật lý, kinh tế, và kỹ thuật. Việc hiểu rõ và vận dụng linh hoạt các kiến thức về đạo hàm sẽ giúp học sinh giải quyết các bài toán một cách hiệu quả và chính xác.

Các bài tập tương tự

Để củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm, học sinh có thể tham khảo các bài tập tương tự trong SGK Toán 12 tập 1 - Kết nối tri thức và các tài liệu tham khảo khác. Ngoài ra, học sinh cũng có thể tìm kiếm các bài giảng trực tuyến và các video hướng dẫn giải bài tập trên các trang web học toán online.

Tổng kết

Bài tập 1.35 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết trên, các em học sinh sẽ hiểu rõ cách giải bài tập này và tự tin làm bài tập.

ĐiểmGiá trị
Cực đại(0, 2)
Cực tiểu(2, -2)

Tài liệu, đề thi và đáp án Toán 12