Logo Header
  1. Môn Toán
  2. Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 2.31 trang 73 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 2.31, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Trong không gian Oxyz, cho \(A\left( {1;0; - 1} \right),B\left( {0; - 1;2} \right)\) và \(G\left( {2;1;0} \right)\). Biết tam giác ABC có trọng tâm G. Tọa độ của điểm C là A. \(\left( {5;4; - 1} \right)\). B. \(\left( { - 5; - 4;1} \right)\). C. \(\left( {1;2; - 1} \right)\). D. \(\left( { - 1; - 2;1} \right)\)

Đề bài

Trong không gian Oxyz, cho \(A\left( {1;0; - 1} \right),B\left( {0; - 1;2} \right)\) và \(G\left( {2;1;0} \right)\). Biết tam giác ABC có trọng tâm G. Tọa độ của điểm C là

A. \(\left( {5;4; - 1} \right)\).

B. \(\left( { - 5; - 4;1} \right)\).

C. \(\left( {1;2; - 1} \right)\).

D. \(\left( { - 1; - 2;1} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về công thức tọa độ trọng tâm của tam giác để tính: Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\). Khi đó, tọa độ trọng tâm của tam giác ABC là: \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

Lời giải chi tiết

Vì G là trọng tâm của tam giác ABC nên

\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.2 - 1 - 0 = 5\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.1 - 0 + 1 = 4\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.0 + 1 - 2 = - 1\end{array} \right.\)

Vậy tọa độ điểm C là \(\left( {5;4; - 1} \right)\)

Chọn A

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm cấp một:
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm đạo hàm bằng không:
  4. f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)NBĐCNT

    (NB: Nghịch biến, ĐC: Đồng biến, NT: Ngược biến)

  7. Kết luận:
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Các kiến thức liên quan cần nắm vững:

  • Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x0 là giới hạn của tỷ số giữa độ biến thiên của hàm số và độ biến thiên của đối số khi đối số tiến tới x0.
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Điều kiện cực trị: Hàm số f(x) đạt cực đại tại x0 nếu f'(x0) = 0 và f''(x0) < 0. Hàm số f(x) đạt cực tiểu tại x0 nếu f'(x0) = 0 và f''(x0) > 0.

Mở rộng: Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tìm cực trị của hàm số: Giúp xác định các điểm cao nhất và thấp nhất của hàm số, có ứng dụng trong tối ưu hóa.
  • Nghiên cứu sự biến thiên của hàm số: Giúp xác định khoảng đồng biến, nghịch biến của hàm số.
  • Giải các bài toán vật lý: Tính vận tốc, gia tốc, lực.
  • Giải các bài toán kinh tế: Tính chi phí biên, doanh thu biên, lợi nhuận biên.

Bài tập tương tự:

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 2.32 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
  • Bài 2.33 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Hy vọng với hướng dẫn chi tiết này, các bạn học sinh đã hiểu rõ cách giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12