Bài tập 2.31 trang 73 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 2.31, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Trong không gian Oxyz, cho \(A\left( {1;0; - 1} \right),B\left( {0; - 1;2} \right)\) và \(G\left( {2;1;0} \right)\). Biết tam giác ABC có trọng tâm G. Tọa độ của điểm C là A. \(\left( {5;4; - 1} \right)\). B. \(\left( { - 5; - 4;1} \right)\). C. \(\left( {1;2; - 1} \right)\). D. \(\left( { - 1; - 2;1} \right)\)
Đề bài
Trong không gian Oxyz, cho \(A\left( {1;0; - 1} \right),B\left( {0; - 1;2} \right)\) và \(G\left( {2;1;0} \right)\). Biết tam giác ABC có trọng tâm G. Tọa độ của điểm C là
A. \(\left( {5;4; - 1} \right)\).
B. \(\left( { - 5; - 4;1} \right)\).
C. \(\left( {1;2; - 1} \right)\).
D. \(\left( { - 1; - 2;1} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức tọa độ trọng tâm của tam giác để tính: Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\). Khi đó, tọa độ trọng tâm của tam giác ABC là: \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).
Lời giải chi tiết
Vì G là trọng tâm của tam giác ABC nên
\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.2 - 1 - 0 = 5\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.1 - 0 + 1 = 4\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.0 + 1 - 2 = - 1\end{array} \right.\)
Vậy tọa độ điểm C là \(\left( {5;4; - 1} \right)\)
Chọn A
Bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | NB | ĐC | NT |
(NB: Nghịch biến, ĐC: Đồng biến, NT: Ngược biến)
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng với hướng dẫn chi tiết này, các bạn học sinh đã hiểu rõ cách giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức. Chúc các bạn học tập tốt!