Logo Header
  1. Môn Toán
  2. Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 1.7 trang 14 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức, tập trung vào việc rèn luyện kỹ năng về giới hạn của hàm số. Bài tập này thường yêu cầu học sinh vận dụng các định nghĩa và tính chất của giới hạn để tính toán và chứng minh.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 1.7 trang 14 SGK Toán 12 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tìm cực trị của các hàm số sau: a) (y = 2{x^3} - 9{x^2} + 12x - 5);(y = {x^4} - 4{x^2} + 2) b) ; c) (y = frac{{{x^2} - 2x + 3}}{{x - 1}}); d) (y = sqrt {4x - 2{x^2}} ).

Đề bài

Tìm cực trị của các hàm số sau:a) \(y = 2{x^3} - 9{x^2} + 12x - 5\);b) \(y = {x^4} - 4{x^2} + 2\);c) \(y = \frac{{{x^2} - 2x + 3}}{{x - 1}}\);d) \(y = \sqrt {4x - 2{x^2}} \).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về cách tìm cực trị của hàm số để tìm cực trị của hàm số \(y = f\left( x \right)\):

1. Tìm tập xác định của hàm số.

2. Tính đạo hàm f’(x). Tìm các điểm mà tại đó đạo hàm f’(x) bằng 0 hoặc đạo hàm không tồn tại.

3. Lập bảng biến thiên của hàm số.

4. Từ bảng biến thiên suy ra các cực trị của hàm số.

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\).

\(y' = 6{x^2} - 18x + 12\), \(y' = 0 \Leftrightarrow 6{x^2} - 18x + 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\)

Bảng biến thiên:

Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức 2

Từ bảng biến thiên ta có:

Hàm số \(y = 2{x^3} - 9{x^2} + 12x - 5\) có điểm cực đại là \(\left( {1;0} \right)\).

Hàm số \(y = 2{x^3} - 9{x^2} + 12x - 5\) có điểm cực tiểu là \(\left( {2; - 1} \right)\).

b) Tập xác định của hàm số là \(\mathbb{R}\).

Ta có: \(y' = 4{x^3} - 8x,y' = 0 \Leftrightarrow 4{x^3} - 8x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\)

Bảng biến thiên:

Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức 3

Từ bảng biến thiên ta có:

Hàm số \(y = {x^4} - 4{x^2} + 2\) đạt cực đại tại \(x = 0\) và \({y_{CĐ}} = 2\).

Hàm số \(y = {x^4} - 4{x^2} + 2\) đạt cực tiểu tại \(x = \pm \sqrt 2 \) và \({y_{CT}} = - 2\).

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y' = \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 3} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 1}}{{{{\left( {x - 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 - \sqrt 2 \\x = 1 + \sqrt 2 \end{array} \right.\) (thỏa mãn)

Lập bảng biến thiên của hàm số:

Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức 4

Từ bảng biến thiên ta có:

Hàm số \(y = \frac{{{x^2} - 2x + 3}}{{x - 1}}\) đạt cực đại tại \(x = 1 - \sqrt 2 \) và \({y_{CĐ}} = -2\sqrt 2 \).

Hàm số \(y = \frac{{{x^2} - 2x + 3}}{{x - 1}}\) đạt cực tiểu tại \(x = 1 + \sqrt 2 \) và \({y_{CT}} = 2\sqrt 2 \).

d) \(y = \sqrt {4x - 2{x^2}} \)

Tập xác định: \(D = \left[ {0;2} \right]\).

Ta có: \(y' = \frac{{\left( {4x - 2{x^2}} \right)'}}{{2\sqrt {4x - 2{x^2}} }} = \frac{2({ - x + 1})}{{\sqrt {4x - 2{x^2}} }},y' = 0 \Leftrightarrow x = 1\left( {tm} \right)\)

Ta có bảng biến thiên của hàm số:

Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức 5

Do đó, hàm số đạt cực đại tại \(x = 1\), \({y_{CĐ}} = \sqrt 2 \), hàm số không có cực tiểu.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.7 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 1.7 SGK Toán 12 tập 1 Kết nối tri thức yêu cầu tính các giới hạn sau:

  1. lim (x→2) (x^2 - 3x + 2) / (x - 2)
  2. lim (x→-1) (x^3 + 1) / (x + 1)
  3. lim (x→0) (√(x+1) - 1) / x

Lời giải chi tiết

Câu a: lim (x→2) (x^2 - 3x + 2) / (x - 2)

Ta có thể phân tích tử thức:

x^2 - 3x + 2 = (x - 1)(x - 2)

Do đó:

lim (x→2) (x^2 - 3x + 2) / (x - 2) = lim (x→2) (x - 1)(x - 2) / (x - 2) = lim (x→2) (x - 1) = 2 - 1 = 1

Câu b: lim (x→-1) (x^3 + 1) / (x + 1)

Ta có thể phân tích tử thức:

x^3 + 1 = (x + 1)(x^2 - x + 1)

Do đó:

lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3

Câu c: lim (x→0) (√(x+1) - 1) / x

Để tính giới hạn này, ta sử dụng phương pháp nhân liên hợp:

lim (x→0) (√(x+1) - 1) / x = lim (x→0) [(√(x+1) - 1)(√(x+1) + 1)] / [x(√(x+1) + 1)]

= lim (x→0) (x + 1 - 1) / [x(√(x+1) + 1)] = lim (x→0) x / [x(√(x+1) + 1)] = lim (x→0) 1 / (√(x+1) + 1)

= 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2

Kết luận

Vậy, kết quả của các giới hạn là:

  • lim (x→2) (x^2 - 3x + 2) / (x - 2) = 1
  • lim (x→-1) (x^3 + 1) / (x + 1) = 3
  • lim (x→0) (√(x+1) - 1) / x = 1/2

Mở rộng kiến thức

Để hiểu rõ hơn về giới hạn hàm số, các em có thể tham khảo thêm các kiến thức sau:

  • Định nghĩa giới hạn hàm số
  • Các tính chất của giới hạn hàm số
  • Các dạng giới hạn thường gặp
  • Ứng dụng của giới hạn trong việc tính đạo hàm

Bài tập tương tự

Các em có thể tự luyện tập thêm các bài tập tương tự để củng cố kiến thức:

  1. Tính lim (x→3) (x^2 - 9) / (x - 3)
  2. Tính lim (x→1) (x^4 - 1) / (x - 1)
  3. Tính lim (x→0) (√(x+4) - 2) / x

Lưu ý

Khi tính giới hạn, cần chú ý đến các dạng vô định và sử dụng các phương pháp phù hợp để khử dạng vô định. Việc nắm vững các định nghĩa và tính chất của giới hạn là rất quan trọng để giải quyết các bài tập một cách chính xác và hiệu quả.

Tài liệu, đề thi và đáp án Toán 12