Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 5.32 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm \(I\left( {1; - 1;2} \right)\) và nhận vectơ \(\overrightarrow n = \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến là A. \(x - y + 2z + 1 = 0\). B. \(x - y + 2z - 6 = 0\). C. \(2x + y - z - 1 = 0\). D. \(2x + y - z + 1 = 0\).
Đề bài
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm \(I\left( {1; - 1;2} \right)\) và nhận vectơ \(\overrightarrow n = \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến là
A. \(x - y + 2z + 1 = 0\).
B. \(x - y + 2z - 6 = 0\).
C. \(2x + y - z - 1 = 0\).
D. \(2x + y - z + 1 = 0\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt phẳng đi qua một điểm và biết vectơ pháp tuyến để viết phương trình: Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) thì có phương trình là:
\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0 \Leftrightarrow Ax + By + Cz + D = 0\) với \(D = - \left( {A{x_0} + B{y_0} + C{z_0}} \right)\)
Lời giải chi tiết
Phương trình mặt phẳng (P) đi qua điểm \(I\left( {1; - 1;2} \right)\) và nhận vectơ \(\overrightarrow n = \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến là: \(2\left( {x - 1} \right) + 1\left( {y + 1} \right) - \left( {z - 2} \right) = 0\) \( \Leftrightarrow 2x + y - z + 1 = 0\)
Chọn D
Bài tập 5.32 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số, hoặc các bài toán ứng dụng thực tế.
Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp chúng ta lựa chọn phương pháp giải phù hợp và tránh sai sót không đáng có. Thông thường, đề bài sẽ cung cấp một hàm số và yêu cầu chúng ta thực hiện một số thao tác như:
Để giải bài tập 5.32 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức, chúng ta có thể áp dụng các phương pháp sau:
(Ở đây sẽ là lời giải chi tiết của bài tập 5.32, bao gồm các bước giải cụ thể, giải thích rõ ràng và kết luận chính xác. Ví dụ, nếu bài toán yêu cầu tìm cực trị, lời giải sẽ trình bày cách tính đạo hàm, giải phương trình đạo hàm, xét dấu đạo hàm và kết luận về các điểm cực trị.)
Để giúp bạn hiểu rõ hơn về cách giải bài tập 5.32, chúng ta sẽ xem xét một ví dụ minh họa:
(Ở đây sẽ là một ví dụ tương tự bài tập 5.32, được giải chi tiết để người đọc có thể tham khảo và áp dụng vào các bài tập khác.)
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Bài tập 5.32 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về đạo hàm. Hy vọng rằng, với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải các bài tập tương tự.
Khái niệm | Giải thích |
---|---|
Đạo hàm | Tốc độ thay đổi tức thời của hàm số tại một điểm. |
Điểm cực trị | Điểm mà tại đó hàm số đạt giá trị lớn nhất hoặc nhỏ nhất trong một khoảng nào đó. |
Khoảng đồng biến | Khoảng mà trên đó hàm số tăng. |
Khoảng nghịch biến | Khoảng mà trên đó hàm số giảm. |