Logo Header
  1. Môn Toán
  2. Giải bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các giải pháp học tập hiệu quả và chất lượng.

Dân số của một quốc gia sau t (năm) kể từ năm 2023 được ước tính bởi công thức: (Nleft( t right) = 100{e^{0,012t}}) (N(t) được tính bằng triệu người, (0 le t le 50)). a) Ước tính dân số của quốc gia này vào các năm 2030 và 2035 (kết quả tính bằng triệu người, làm tròn kết quả đến chữ số thập phân thứ ba). b) Xem N(t) là hàm số của biến số t xác định trên đoạn [0; 50]. Xét chiều biến thiên của hàm số N(t) trên đoạn [0; 50]. c) Đạo hàm của hàm số N(t) biểu thị tốc độ tăng dân số của quố

Đề bài

Dân số của một quốc gia sau t (năm) kể từ năm 2023 được ước tính bởi công thức: \(N\left( t \right) = 100{e^{0,012t}}\) (N(t) được tính bằng triệu người, \(0 \le t \le 50\)).a) Ước tính dân số của quốc gia này vào các năm 2030 và 2035 (kết quả tính bằng triệu người, làm tròn kết quả đến chữ số thập phân thứ ba).b) Xem N(t) là hàm số của biến số t xác định trên đoạn [0; 50]. Xét chiều biến thiên của hàm số N(t) trên đoạn [0; 50].c) Đạo hàm của hàm số N(t) biểu thị tốc độ tăng dân số của quốc gia đó (tính bằng triệu người/ năm). Vào năm nào tốc độ tăng dân số của quốc gia đó là 1,6 triệu người/ năm?

Phương pháp giải - Xem chi tiếtGiải bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về chiều biến thiên của hàm số để tính: Việc tìm các khoảng đồng biến, nghịch biến của hàm số còn được nói gọn là xét chiều biến thiên của hàm số.

Sử dụng kiến thức về cách tìm khoảng đồng biến, nghịch biến \(y = f\left( x \right)\) để tính:

1. Tìm tập xác định của hàm số.

2. Tính đạo hàm f’(x). Tìm các điểm \({x_i}\left( {i = 1,2,...} \right)\) mà tại đó đạo hàm f’(x) bằng 0 hoặc đạo hàm không tồn tại.

3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên của hàm số.

4. Nêu kết luận về khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

a) Dân số của quốc gia vào năm 2030 là: \(N\left( 7 \right) = 100{e^{0,012.7}} = 100{e^{0,084}} = 108,763\) (triệu người).

Dân số của quốc gia vào năm 2035 là: \(N\left( {12} \right) = 100{e^{0,012.12}} = 100{e^{0,144}} = 115,488\) (triệu người).

b) Trên đoạn [0; 50] ta có: \(N'\left( t \right) = 0,012.100{e^{0,012t}} = 1,2{e^{0,012t}} > 0\;\forall t \in \left[ {0;50} \right]\).

Do đó, hàm số N(t) đồng biến trên đoạn [0; 50].

c) Ta có: \(N'\left( t \right) = 1,2{e^{0,012t}}\).

Với tốc độ tăng dân số của quốc gia đó là 1,6 triệu người/ năm ta có:

\(1,6 = 1,2{e^{0,012t}} \Leftrightarrow {e^{0,012t}} = \frac{4}{3} \Leftrightarrow t = \frac{{250\ln \frac{4}{3}}}{3} \approx 23,97\).

Vậy vào năm 2047 thì tốc độ tăng dân số của quốc gia đó là 1,6 triệu người/ năm.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:

Phân tích đề bài

Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Bài tập 1.45 thường yêu cầu tính đạo hàm của một hàm số tại một điểm hoặc trên một khoảng. Đôi khi, đề bài còn yêu cầu tìm điều kiện để hàm số có đạo hàm.

Công thức và kiến thức cần nhớ

Để giải bài tập này, học sinh cần nắm vững các công thức và kiến thức sau:

  • Định nghĩa đạo hàm: f'(x) = lim (h->0) [f(x+h) - f(x)] / h
  • Các quy tắc tính đạo hàm:
    • Đạo hàm của tổng: (u + v)' = u' + v'
    • Đạo hàm của tích: (uv)' = u'v + uv'
    • Đạo hàm của thương: (u/v)' = (u'v - uv') / v^2
    • Đạo hàm của hàm hợp: (f(g(x)))' = f'(g(x)) * g'(x)
  • Đạo hàm của các hàm số cơ bản:
    • (x^n)' = nx^(n-1)
    • (sin x)' = cos x
    • (cos x)' = -sin x
    • (e^x)' = e^x
    • (ln x)' = 1/x

Lời giải chi tiết bài tập 1.45

(Nội dung lời giải chi tiết bài tập 1.45 sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, giải thích rõ ràng và kết quả cuối cùng. Ví dụ:)

Ví dụ: Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x^2 + 2x + 1 tại x = 1.

  1. Tính f'(x) = 2x + 2
  2. Thay x = 1 vào f'(x): f'(1) = 2(1) + 2 = 4
  3. Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 1.45, còn rất nhiều bài tập tương tự yêu cầu học sinh vận dụng kiến thức về đạo hàm. Một số dạng bài tập thường gặp bao gồm:

  • Tìm đạo hàm của hàm số phức tạp
  • Tìm điều kiện để hàm số có đạo hàm
  • Vận dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu

Để giải các bài tập này, học sinh cần nắm vững các công thức và quy tắc tính đạo hàm, đồng thời rèn luyện kỹ năng phân tích đề bài và lựa chọn phương pháp giải phù hợp.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, học sinh nên luyện tập thêm với các bài tập khác trong SGK và các tài liệu tham khảo. Giaitoan.edu.vn cung cấp một kho bài tập phong phú và đa dạng, giúp các em tự tin hơn trong quá trình học tập.

Kết luận

Bài tập 1.45 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về đạo hàm và các ứng dụng của nó. Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin hơn trong quá trình giải bài tập và đạt kết quả tốt trong môn Toán.

Giaitoan.edu.vn luôn sẵn sàng hỗ trợ các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12