Bài tập 5.42 trang 62 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 5.42, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong không gian Oxyz, cho mặt phẳng (P): \(x - 2y + 2z - 1 = 0\) và hai điểm \(A\left( {1; - 1;2} \right),B\left( { - 1;1;0} \right)\). a) Tính khoảng cách từ A đến mặt phẳng (P). b) Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P). c) Viết phương trình mặt phẳng (R) chứa A, B và vuông góc với mặt phẳng (P).
Đề bài
Trong không gian Oxyz, cho mặt phẳng (P): \(x - 2y + 2z - 1 = 0\) và hai điểm \(A\left( {1; - 1;2} \right),B\left( { - 1;1;0} \right)\).
a) Tính khoảng cách từ A đến mặt phẳng (P).
b) Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P).
c) Viết phương trình mặt phẳng (R) chứa A, B và vuông góc với mặt phẳng (P).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Trong không gian Oxyz, khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) là \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
b) Sử dụng kiến thức về phương trình mặt phẳng đi qua một điểm và biết vectơ pháp tuyến để viết phương trình: Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) thì có phương trình là:
\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0 \Leftrightarrow Ax + By + Cz + D = 0\) với \(D = - \left( {A{x_0} + B{y_0} + C{z_0}} \right)\)
c) Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:
+ Tìm vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).
Lời giải chi tiết
a) Khoảng cách từ điểm A đến (P) là: \(d\left( {A,\left( P \right)} \right) = \frac{{\left| {1.1 - 2.\left( { - 1} \right) + 2.2 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{6}{3} = 2\)
b) Mặt phẳng (P) có \(\overrightarrow {{n_P}} = \left( {1; - 2;2} \right)\) là một vectơ pháp tuyến.
Vì mặt phẳng (Q) song song với mặt phẳng (P) nên mặt phẳng (Q) nhận vectơ \(\overrightarrow {{n_P}} = \left( {1; - 2;2} \right)\) làm một vectơ pháp tuyến. Mà (Q) đi qua điểm A nên phương trình mặt phẳng (Q) là: \(x - 1 - 2\left( {y + 1} \right) + 2\left( {z - 2} \right) = 0 \Leftrightarrow x - 2y + 2z - 7 = 0\)
c) Ta có: \(\overrightarrow {AB} \left( { - 2;2; - 2} \right) \Rightarrow \frac{{ - 1}}{2}\overrightarrow {AB} = \left( {1; - 1;1} \right)\)
\(\left[ {\overrightarrow {{n_P}} ;\frac{{ - 1}}{2}\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 1}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 2}\\1&{ - 1}\end{array}} \right|} \right) = \left( {0;1;1} \right)\)
Mặt phẳng (R) đi qua điểm A và nhận vectơ \(\left[ {\overrightarrow {{n_P}} ;\frac{{ - 1}}{2}\overrightarrow {AB} } \right] = \left( {0;1;1} \right)\) làm một vectơ pháp tuyến nên phương trình mặt phẳng (R) là: \(y + 1 + z - 2 = 0 \Leftrightarrow y + z - 1 = 0\)
Bài tập 5.42 SGK Toán 12 tập 2 Kết nối tri thức yêu cầu học sinh giải một bài toán thực tế liên quan đến việc tìm giá trị lớn nhất hoặc nhỏ nhất của hàm số. Để giải bài tập này, học sinh cần nắm vững kiến thức về đạo hàm, các bước tìm cực trị của hàm số và điều kiện của bài toán.
Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu của bài toán. Xác định hàm số cần xét, khoảng xác định của hàm số và mục tiêu của bài toán (tìm giá trị lớn nhất, giá trị nhỏ nhất hoặc cả hai).
Đề bài: Tìm giá trị lớn nhất của hàm số f(x) = -x3 + 3x2 - 2 trên đoạn [0; 3].
Giải:
Đạo hàm có rất nhiều ứng dụng trong thực tế, như:
Bài tập 5.42 trang 62 SGK Toán 12 tập 2 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.