Logo Header
  1. Môn Toán
  2. Giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.

Thời gian chạy tập luyện cự li 100m của hai vận động viên được cho trong bảng sau: Dựa trên độ lệch chuẩn của mẫu số liệu ghép nhóm, hãy cho biết vận động viên nào có thành tích luyện tập ổn định hơn.

Đề bài

Thời gian chạy tập luyện cự li 100m của hai vận động viên được cho trong bảng sau: Giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức 1

Dựa trên độ lệch chuẩn của mẫu số liệu ghép nhóm, hãy cho biết vận động viên nào có thành tích luyện tập ổn định hơn.

Phương pháp giải - Xem chi tiếtGiải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức 2

a) Sử dụng kiến thức về phương sai của mẫu số liệu ghép nhóm để tính: Phương sai của mẫu số liệu ghép nhóm, kí hiệu là \({s^2}\), là một số được tính theo công thức sau: \({s^2} = \frac{1}{n}\left( {{m_1}x_1^2 + ... + {m_k}x_k^2} \right) - {\left( {\overline x } \right)^2}\), trong đó \(n = {m_1} + ... + {m_k}\) với \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\) là số trung bình của mẫu số liệu ghép nhóm.

Sử dụng kiến thức độ lệch chuẩn của mẫu số liệu ghép nhóm để tính: Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu là s, là căn bậc hai số học của phương sai của mẫu số liệu ghép nhóm, tức là \(s = \sqrt {{s^2}} \)

b) Sử dụng kiến thức về ý nghĩa của độ lệch chuẩn để nhận xét: Độ lệch chuẩn dùng để đo mức độ phân tán của mẫu số liệu ghép nhóm xung quanh số trung bình của mẫu số liệu đó. Độ lệch chuẩn càng lớn thì mẫu số liệu càng phân tán.

Lời giải chi tiết

Ta có bảng số liệu với giá trị đại diện: Giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức 3

Vận động viên A:

Giá trị trung bình \(\overline {{x_A}} = \frac{{10,15.2 + 10,45.10 + 10,75.5 + 11,05.3}}{{2 + 10 + 5 + 3}} = \frac{{2117}}{{200}}\)

Phương sai: \(s_A^2 = \frac{1}{{20}}\left( {10,{{15}^2}.2 + 10,{{45}^2}.10 + 10,{{75}^2}.5 + 11,{{05}^2}.3} \right) - {\left( {\frac{{2117}}{{200}}} \right)^2} = \frac{{2691}}{{40000}}\)

Độ lệch chuẩn: \({s_A} = \sqrt {\frac{{2691}}{{40000}}} \approx 0,26\)

Vận động viên B:

Giá trị trung bình \(\overline {{x_B}} = \frac{{10,15.3 + 10,45.7 + 10,75.9 + 11,05.6}}{{3 + 7 + 9 + 6}} = \frac{{5333}}{{500}}\)

Phương sai: \(s_B^2 = \frac{1}{{25}}\left( {10,{{15}^2}.3 + 10,{{45}^2}.7 + 10,{{75}^2}.9 + 11,{{05}^2}.6} \right) - {\left( {\frac{{5333}}{{500}}} \right)^2} = \frac{{1296}}{{15625}}\)

Độ lệch chuẩn: \({s_B} = \sqrt {\frac{{1296}}{{15625}}} = 0,288\)

Vì \({s_A} < {s_B}\) nên vận động viên A có thành tích luyện tập ổn định hơn.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này, chúng ta cần nắm vững các khái niệm và công thức liên quan đến đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit)

Nội dung bài tập 3.7:

(Giả sử nội dung bài tập là: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)

Lời giải:

  1. Tìm tập xác định của hàm số: Hàm số y = f(x) = x3 - 3x2 + 2 có tập xác định là R.
  2. Tính đạo hàm cấp một: f'(x) = 3x2 - 6x
  3. Tìm các điểm dừng: Giải phương trình f'(x) = 0, ta được: 3x2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2
  4. Lập bảng biến thiên:
x-∞02+∞
f'(x)+-+
f(x)ĐạiTiểu

Từ bảng biến thiên, ta thấy:

  • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2
  • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2

Kết luận: Hàm số y = f(x) = x3 - 3x2 + 2 có điểm cực đại là (0; 2) và điểm cực tiểu là (2; -2).

Lưu ý:

Khi giải bài tập về đạo hàm, bạn cần chú ý các bước sau:

  • Xác định đúng tập xác định của hàm số.
  • Tính đạo hàm cấp một một cách chính xác.
  • Tìm các điểm dừng bằng cách giải phương trình đạo hàm cấp một bằng 0.
  • Lập bảng biến thiên để xác định các điểm cực trị và khoảng đơn điệu của hàm số.

Các bài tập tương tự:

Để củng cố kiến thức về đạo hàm, bạn có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 1 - Kết nối tri thức và các tài liệu ôn tập khác. Ngoài ra, bạn cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi Toán 12 để được hướng dẫn chi tiết hơn.

Ứng dụng của đạo hàm:

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tìm cực trị của hàm số
  • Khảo sát sự biến thiên của hàm số
  • Giải các bài toán tối ưu hóa
  • Tính vận tốc và gia tốc trong vật lý

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài tập 3.7 trang 84 SGK Toán 12 tập 1 - Kết nối tri thức. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12