Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 5.20 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Trong không gian Oxyz, tính góc giữa hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - t\\z = 2 + 3t\end{array} \right.\) và \({\Delta _2}:\frac{{x - 2}}{{ - 1}} = \frac{{x + 1}}{1} = \frac{{z - 2}}{2}\).
Đề bài
Trong không gian Oxyz, tính góc giữa hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - t\\z = 2 + 3t\end{array} \right.\) và \({\Delta _2}:\frac{{x - 2}}{{ - 1}} = \frac{{x + 1}}{1} = \frac{{z - 2}}{2}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa hai đường thẳng để tính: Trong không gian Oxyz, cho hai đường thẳng \(\Delta \) và \(\Delta '\) tương ứng có các vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right),\overrightarrow {u'} = \left( {a';b';c'} \right)\). Khi đó: \(\cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow {u'} } \right)} \right| = \frac{{\left| {aa' + bb' + cc'} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {a{'^2} + b{'^2} + c{'^2}} }}\).
Lời giải chi tiết
Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2; - 1;3} \right)\), đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;1;2} \right)\).
Do đó: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {2.\left( { - 1} \right) - 1.1 + 3.2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {3^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {2^2}} }} = \frac{{\sqrt {21} }}{{14}}\)
Suy ra: \(\left( {{\Delta _1},{\Delta _2}} \right) \approx 70,{9^o}\)
Bài tập 5.20 trang 53 SGK Toán 12 tập 2 thuộc chương trình học môn Toán lớp 12, cụ thể là chương về Nguyên hàm tích phân và ứng dụng. Bài tập này thường liên quan đến việc tính tích phân, ứng dụng tích phân để tính diện tích hình phẳng, hoặc giải các bài toán liên quan đến đạo hàm và tích phân. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về tích phân, các phương pháp tính tích phân và các ứng dụng của tích phân trong thực tế.
Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn lựa chọn phương pháp giải phù hợp và tránh những sai sót không đáng có. Hãy chú ý đến các thông tin quan trọng như khoảng tích phân, hàm số cần tích phân, và các điều kiện ràng buộc khác.
Tùy thuộc vào dạng bài tập cụ thể, có nhiều phương pháp giải khác nhau có thể được áp dụng. Dưới đây là một số phương pháp phổ biến:
(Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, các phép tính và giải thích rõ ràng. Ví dụ:)
Ví dụ: Giả sử bài tập yêu cầu tính tích phân ∫ab f(x) dx. Ta thực hiện các bước sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập 5.20 trang 53, chúng tôi sẽ cung cấp một số ví dụ minh họa và các bài tập tương tự để bạn luyện tập.
Khi giải bài tập, bạn cần lưu ý một số điều sau:
Bài tập 5.20 trang 53 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng trong chương trình học môn Toán lớp 12. Bằng cách nắm vững các kiến thức cơ bản về tích phân và áp dụng các phương pháp giải phù hợp, bạn có thể giải bài tập này một cách hiệu quả và đạt kết quả cao. Hy vọng rằng bài viết này đã cung cấp cho bạn những thông tin hữu ích và giúp bạn tự tin hơn trong việc học tập.
Công thức | Mô tả |
---|---|
∫ xn dx = (xn+1)/(n+1) + C | Tích phân của lũy thừa |
∫ sin(x) dx = -cos(x) + C | Tích phân của sin(x) |
∫ cos(x) dx = sin(x) + C | Tích phân của cos(x) |