Bài tập 4.35 trang 28 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 4.35, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Nghệ thuật làm gốm có lịch sử phát triển lâu đời và vẫn còn tồn tại cho đến ngày nay. Giả sử một bình gốm có mặt trong bình là một mặt tròn xoay sinh ra khi cho phần đồ thị của hàm số (y = frac{1}{{175}}{x^2} + frac{3}{{35}}x + 5left( {0 le x le 30} right)) (x, y tính theo cm) quay tròn quanh bệ gồm có trục trùng với trục hoành Ox. Hỏi để hoàn thành bình gốm đó ta cần sử dụng bao nhiêu (c{m^3}) đất sét, biết rằng bình gốm đó có độ dày không đổi là 1cm.
Đề bài
Nghệ thuật làm gốm có lịch sử phát triển lâu đời và vẫn còn tồn tại cho đến ngày nay. Giả sử một bình gốm có mặt trong bình là một mặt tròn xoay sinh ra khi cho phần đồ thị của hàm số \(y = \frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5\left( {0 \le x \le 30} \right)\) (x, y tính theo cm) quay tròn quanh bệ gồm có trục trùng với trục hoành Ox. Hỏi để hoàn thành bình gốm đó ta cần sử dụng bao nhiêu \(c{m^3}\) đất sét, biết rằng bình gốm đó có độ dày không đổi là 1 cm.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức tính thể tích của khối tròn xoay để tính: Cho hàm số f(x) liên tục, không âm trên đoạn [a; b]. Khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) xung quanh trục hoành, ta được hình khối gọi là một khối tròn xoay. Khi cắt khối tròn xoay đó bởi một mặt phẳng vuông góc với trục Ox tại điểm \(x \in \left[ {a;b} \right]\) được một hình tròn có bán kính f(x). Thể tích của khối tròn xoay này là: \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).
Lời giải chi tiết
Gọi \(f(x) = \frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5\) là đồ thị mặt trong của thành bình.
Khi đó, \(g(x) = f(x) + 1 = \frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 6\) là đồ thị mặt ngoài của thành bình (vì độ dày của bình là 1 cm).
Gọi \({V_N}\) là thể tích bình kể cả vỏ bình, \({V_T}\) là thể tích phần rỗng trong bình.
Khi đó, thể tích đất sét để làm bình gốm là \(V = {V_N} - {V_T}\).
\({V_T}\) được giới hạn bởi đồ thị \(f(x) = \frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5\), trục hoành và hai đường thẳng x = 0, x = 30.
Ta có \({V_T} = \pi \int\limits_0^{30} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5} \right)}^2}dx} \approx 6513\) \((c{m^3})\).
\({V_N}\) được giới hạn bởi đồ thị \(g(x) = \frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 6\), trục hoành và hai đường thẳng x = 0, x = 31 (do đáy bình cũng dày 1 cm).
Ta có \({V_N} = \pi \int\limits_0^{31} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 6} \right)}^2}dx} \approx 8725\) \((c{m^3})\).
Vậy thể tích đất sét để làm bình gốm là \(V = {V_N} - {V_T} \approx 8725 - 6513 = 2212\) \((c{m^3})\).
Trước khi đi vào phần giải chi tiết, chúng ta cùng xem lại đề bài của bài tập 4.35 trang 28 SGK Toán 12 tập 2 - Kết nối tri thức:
(Đề bài cụ thể của bài tập 4.35 sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) có đạo hàm f'(x) = (x-1)^2(x+2). Hàm số y = f(x) đồng biến trên khoảng nào sau đây?)
Để giải bài tập này, chúng ta cần nắm vững kiến thức về:
Hàm số y = f(x) đồng biến trên khoảng (a; b) khi và chỉ khi f'(x) > 0 với mọi x thuộc (a; b).
Trong bài toán này, ta có f'(x) = (x-1)^2(x+2). Để tìm khoảng đồng biến, ta cần giải bất phương trình f'(x) > 0.
(Giải chi tiết bất phương trình f'(x) > 0, phân tích dấu của từng nhân tử (x-1)^2 và (x+2).)
Từ kết quả giải bất phương trình, ta suy ra hàm số y = f(x) đồng biến trên khoảng (a; b) (ví dụ: khoảng (-2; +∞)).
Để hiểu rõ hơn về bài tập này, các em có thể tham khảo thêm các kiến thức sau:
Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm và tính đơn điệu của hàm số, các em có thể tham khảo các bài tập tương tự sau:
Bài tập 4.35 trang 28 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp các em củng cố kiến thức về đạo hàm và tính đơn điệu của hàm số. Hy vọng với lời giải chi tiết và các kiến thức liên quan được trình bày ở trên, các em sẽ hiểu rõ hơn về bài tập này và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!