Logo Header
  1. Môn Toán
  2. Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 1.8 trang 14 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Cho hàm số (y = fleft( x right) = left| x right|). a) Tính các giới hạn (mathop {lim }limits_{x to {0^ + }} frac{{fleft( x right) - fleft( 0 right)}}{{x - 0}}) và (mathop {lim }limits_{x to {0^ - }} frac{{fleft( x right) - fleft( 0 right)}}{{x - 0}}). Từ đó suy ra hàm số không có đạo hàm tại (x = 0). b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại (x = 0). (Xem Hình 1.4)

Đề bài

Cho hàm số \(y = f\left( x \right) = \left| x \right|\).a) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) và \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\). Từ đó suy ra hàm số không có đạo hàm tại \(x = 0\).b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại \(x = 0\). (Xem Hình 1.4)

Phương pháp giải - Xem chi tiếtGiải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về cực trị hàm số để tìm cực tiểu của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên khoảng (a; b) (a có thể là \( - \infty \), b có thể là \( + \infty \)) và điểm \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại số \(h > 0\) sao cho \(f\left( x \right) > f\left( {{x_0}} \right)\) với mọi \(x \in \left( {{x_0} - h;{x_0} + h} \right) \subset \left( {a;b} \right)\) và \(x \ne {x_0}\) thì ta nói hàm số f(x) đạt cực tiểu tại \({x_0}\).

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{x} = 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{ - x}}{x} = - 1\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) nên hàm số không có đạo hàm tại \(x = 0\).

b) Đồ thị hàm số \(y = f\left( x \right) = \left| x \right|\):

Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức 2

Ta có: \(y = f\left( x \right) = \left| x \right| = \left\{ \begin{array}{l} - x\;khi\;x \in \left( { - \infty ;0} \right)\\x\;\;\;khi\;x \in \left( {0; + \infty } \right)\end{array} \right.\)

Hàm số \(y = f\left( x \right) = \left| x \right|\) liên tục và xác định trên \(\left( { - \infty ; + \infty } \right)\)

Với số \(h > 0\) ta có: Với \(x \in \left( { - h;h} \right) \subset \left( { - \infty ; + \infty } \right)\) và \(x \ne 0\) thì \(y = f\left( x \right) = \left| x \right| > 0 = f\left( 0 \right)\)

Do đó, hàm số \(y = f\left( x \right) = \left| x \right|\) có cực tiểu là \(x = 0\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan

Bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để học tốt môn Toán 12.

Nội dung bài tập 1.8 trang 14

Bài tập 1.8 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải bài tập này, học sinh cần:

  • Xác định đúng dạng của hàm số.
  • Áp dụng các quy tắc tính giới hạn phù hợp.
  • Kiểm tra điều kiện tồn tại giới hạn.

Lời giải chi tiết bài tập 1.8 trang 14

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức:

Câu a)

Để giải câu a, ta cần tính giới hạn của hàm số f(x) khi x tiến tới một giá trị cụ thể. Ta có thể sử dụng định nghĩa giới hạn hoặc các quy tắc tính giới hạn để tìm ra kết quả.

Ví dụ:

lim (x->2) (x^2 - 4) / (x - 2) = lim (x->2) (x + 2) = 4

Câu b)

Tương tự như câu a, ta cần xác định dạng của hàm số và áp dụng các quy tắc tính giới hạn phù hợp. Nếu hàm số có dạng vô định, ta cần sử dụng các phương pháp khử mẫu hoặc biến đổi đại số để tìm ra giới hạn.

Câu c)

Đối với các hàm số phức tạp hơn, ta có thể cần sử dụng các định lý giới hạn hoặc các kỹ thuật khác để giải quyết bài toán.

Các dạng bài tập tương tự

Ngoài bài tập 1.8, còn rất nhiều bài tập tương tự về giới hạn hàm số trong SGK Toán 12 tập 1 - Kết nối tri thức. Để luyện tập và nâng cao kỹ năng giải bài tập, bạn có thể tham khảo các bài tập sau:

  • Bài tập 1.9 trang 14
  • Bài tập 1.10 trang 15
  • Bài tập 1.11 trang 15

Mẹo giải bài tập về giới hạn hàm số

Để giải bài tập về giới hạn hàm số một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  1. Nắm vững định nghĩa giới hạn và các quy tắc tính giới hạn.
  2. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  3. Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm toán học để kiểm tra kết quả.
  4. Tham khảo các tài liệu tham khảo và lời giải chi tiết trên mạng.

Kết luận

Bài tập 1.8 trang 14 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn hàm số. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập được cung cấp trong bài viết này, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Dạng bài tậpPhương pháp giải
Hàm đa thứcThay trực tiếp giá trị của x vào hàm số
Hàm hữu tỉKhử mẫu hoặc sử dụng quy tắc L'Hopital
Hàm lượng giácSử dụng các công thức lượng giác và giới hạn đặc biệt

Tài liệu, đề thi và đáp án Toán 12