Logo Header
  1. Môn Toán
  2. Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 1.44 trang 44 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 1.44, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Xét một thấu kính hội tụ có tiêu cự f (H.1.39). Khoảng cách p từ vật đến thấu kính liên hệ với khoảng cách q từ ảnh đến thấu kính bởi hệ thức: \(\frac{1}{p} + \frac{1}{q} = \frac{1}{f}\). a) Viết công thức tính \(q = g\left( p \right)\) như một hàm số của biến \(p \in \left( {f; + \infty } \right)\). b) Tính các giới hạn \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right),\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right)\) và giải thích ý nghĩa các kết quả này. Lập bảng bi

Đề bài

Xét một thấu kính hội tụ có tiêu cự f (H.1.39). Khoảng cách p từ vật đến thấu kính liên hệ với khoảng cách q từ ảnh đến thấu kính bởi hệ thức: \(\frac{1}{p} + \frac{1}{q} = \frac{1}{f}\). Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 1a) Viết công thức tính \(q = g\left( p \right)\) như một hàm số của biến \(p \in \left( {f; + \infty } \right)\).b) Tính các giới hạn \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right),\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right)\) và giải thích ý nghĩa các kết quả này.Lập bảng biến thiên của hàm số \(q = g\left( p \right)\) trên khoảng \(\left( {f; + \infty } \right)\).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 2

Sử dụng kiến thức về tính giới hạn của hàm số để tính.

Sử dụng kiến thức về lập bảng biến thiên của hàm số để lập bảng biến thiên: Lập bảng biến thiên của hàm số, tức là lập bảng thể hiện dấu của đạo hàm và sự đồng biến, nghịch biến của hàm số trên các khoảng tương ứng.

Lời giải chi tiết

a) Ta có: \(\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \Rightarrow q = \frac{{pf}}{{p - f}}\). Do đó, \(q = g\left( p \right) = \frac{{pf}}{{p - f}}\) với \(p \in \left( {f; + \infty } \right)\).

b) \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right) = \mathop {\lim }\limits_{p \to + \infty } \frac{{pf}}{{p - f}} = \mathop {\lim }\limits_{p \to + \infty } \frac{f}{{1 - \frac{f}{p}}} = f,\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right) = \mathop {\lim }\limits_{p \to {f^ + }} \frac{{pf}}{{p - f}} = + \infty \)

Ý nghĩa của \(\mathop {\lim }\limits_{p \to + \infty } g\left( p \right) = f\): Khoảng cách từ vật đến thấu kính tiến ra vô cùng thì khoảng cách từ ảnh đến thấu kính xấp xỉ tiêu cự.

Ý nghĩa của \(\mathop {\lim }\limits_{p \to {f^ + }} g\left( p \right) = + \infty \): Khoảng cách từ vật đến thấu kính tiến gần về tiêu cự f thì khoảng cách từ ảnh đến thấu kính là càng lớn.

c) Ta có: \(q' = g'\left( p \right) = \frac{{ - {f^2}}}{{{{\left( {p - f} \right)}^2}}} < 0\;\forall p \in \left( {f; + \infty } \right)\) nên hàm số nghịch biến trên \(\left( {f; + \infty } \right)\).

Bảng biến thiên:

Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 3

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.44 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 1.44 SGK Toán 12 tập 1 Kết nối tri thức là một bài toán quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm cấp một:
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm đạo hàm bằng không:
  4. f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  7. Kết luận:
  8. Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

    Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Các kiến thức liên quan cần nắm vững:

  • Định nghĩa đạo hàm: Hiểu rõ khái niệm đạo hàm của hàm số tại một điểm và đạo hàm trên một khoảng.
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  • Điều kiện cực trị: Biết điều kiện cần và đủ để một điểm là điểm cực trị của hàm số.
  • Ứng dụng của đạo hàm: Hiểu cách sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số.

Mở rộng:

Bài tập 1.44 là một ví dụ điển hình về việc ứng dụng đạo hàm để tìm cực trị của hàm số. Trong thực tế, việc tìm cực trị của hàm số có nhiều ứng dụng quan trọng trong các lĩnh vực như kinh tế, kỹ thuật và khoa học tự nhiên.

Luyện tập thêm:

Để nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm, các em học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Giaitoan.edu.vn sẽ tiếp tục cung cấp các bài giải chi tiết và hướng dẫn giải các bài tập Toán 12 khác.

Ví dụ bài tập tương tự:

Tìm các điểm cực trị của hàm số g(x) = x4 - 4x2 + 3.

Lưu ý: Bài giải trên chỉ mang tính chất tham khảo. Các em học sinh nên tự mình giải bài tập để hiểu rõ hơn về kiến thức và rèn luyện kỹ năng giải toán.

Tài liệu, đề thi và đáp án Toán 12