Bài tập 4.6 trang 11 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 4.6 trang 11 SGK Toán 12 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hàm số \(y = f\left( x \right)\) có đồ thị là (C). Xét điểm \(M\left( {x;f\left( x \right)} \right)\) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).
Đề bài
Cho hàm số \(y = f\left( x \right)\) có đồ thị là (C). Xét điểm \(M\left( {x;f\left( x \right)} \right)\) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hệ số góc của tiếp tuyến đồ thị để tính: Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).
Lời giải chi tiết
Vì hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) nên \(f'\left( x \right) = {\left( {x - 1} \right)^2}\)
Ta có: \(f\left( x \right) = \int {f'\left( x \right)dx} = \int {{{\left( {x - 1} \right)}^2}dx} = \int {\left( {{x^2} - 2x + 1} \right)dx} = \frac{{{x^3}}}{3} - {x^2} + x + C\)
Vì điểm M trùng với gốc tọa độ khi nó nằm trên trục tung nên M(0; 0).
Do đó ta có: \(f\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(f\left( x \right) = \frac{{{x^3}}}{3} - {x^2} + x\).
Bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bài toán này thường liên quan đến việc tìm đạo hàm của hàm số, xét dấu đạo hàm để xác định tính đơn điệu của hàm số, và tìm cực trị của hàm số.
Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu của bài toán. Điều này bao gồm việc xác định hàm số cần xét, khoảng xác định của hàm số, và các yêu cầu cụ thể của bài toán (ví dụ: tìm đạo hàm, xét dấu đạo hàm, tìm cực trị).
Để giải bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức, chúng ta có thể áp dụng các phương pháp sau:
(Giả sử đề bài cụ thể là: Tìm cực trị của hàm số y = x3 - 3x2 + 2)
Bước 1: Tính đạo hàm
y' = 3x2 - 6x
Bước 2: Tìm điểm cực trị
y' = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
⇔ x = 0 hoặc x = 2
Bước 3: Xét dấu đạo hàm
Bước 4: Kết luận
Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Để hiểu rõ hơn về phương pháp giải bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức, chúng ta hãy xem xét một ví dụ minh họa khác. (Ví dụ khác về bài toán đạo hàm)
Khi giải bài tập về đạo hàm, cần lưu ý các điểm sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng giúp học sinh hiểu rõ về đạo hàm và ứng dụng của đạo hàm. Bằng cách áp dụng các phương pháp giải đã trình bày, bạn có thể tự tin giải quyết bài toán này và các bài toán tương tự.