Logo Header
  1. Môn Toán
  2. Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức

Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức

Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng các em học sinh đến với bài giải chi tiết mục 3 trang 52,53 SGK Toán 12 tập 2 chương trình Kết nối tri thức. Bài viết này cung cấp lời giải đầy đủ, dễ hiểu cho từng bài tập, giúp các em nắm vững kiến thức và tự tin làm bài tập về nhà.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các tài liệu học tập chất lượng và phương pháp giải bài tập hiệu quả.

CÔNG THỨC TÍNH GÓC GIỮA HAI MẶT PHẲNG

VD

    Trả lời câu hỏi Vận dụng trang 53 SGK Toán 12 Kết nối tri thức

    Hãy trả lời câu hỏi đã được nêu ra trong tình huống mở đầu.

    Phương pháp giải:

    Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)) được tính theo công thức:

    \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{'^2} + B{'^2} + C{'^2}} }}\)

    Lời giải chi tiết:

    Ta có: \(A\left( {0; - 2;0} \right),C\left( {0;2;0} \right),B\left( {2\sqrt 3 ;0;0} \right),A'\left( {0; - 2;7} \right),C'\left( {0;2;5} \right),B'\left( {2\sqrt 3 ;0;6} \right)\)

    \(\overrightarrow {AB} \left( {2\sqrt 3 ;2;0} \right),\overrightarrow {AC} \left( {0;4;0} \right);\overrightarrow {A'B'} \left( {2\sqrt 3 ;2; - 1} \right),\overrightarrow {A'C'} \left( {0;4; - 2} \right)\)

    \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&0\\4&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}0&{2\sqrt 3 }\\0&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{2\sqrt 3 }&2\\0&4\end{array}} \right|} \right) = \left( {0;0; 8\sqrt 3 } \right)\)

    \(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 1}\\4&{ - 2}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 1}&{2\sqrt 3 }\\{ - 2}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{2\sqrt 3 }&2\\0&4\end{array}} \right|} \right) = \left( {0;4\sqrt 3 ;8\sqrt 3 } \right)\)

    Mặt phẳng (ABC) có một vectơ pháp tuyến là: \(\frac{{ 1}}{{8\sqrt 3 }}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0;0;1} \right)\)

    Mặt phẳng (A’B’C’) có một vectơ pháp tuyến là: \(\frac{1}{{4\sqrt 3 }}\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {0;1;2} \right)\)

    Do đó, \(\cos \left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = \frac{{\left| {0.0 + 0.1 + 1.2} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {1^2} + {2^2}} }} = \frac{{2\sqrt 5 }}{5}\)

    \( \Rightarrow \left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) \approx 26,{6^o}\)

    Vậy mái nhà nghiêng so với mặt sàn nhà một góc khoảng \(26,{1^o}\).

    LT3

      Trả lời câu hỏi Luyện tập 3 trang 52 SGK Toán 12 Kết nối tri thức

      Trong không gian Oxyz, tính góc giữa hai mặt phẳng \(\left( P \right):x - \sqrt 2 y + z - 2 = 0\) và \(\left( {Oxz} \right):y = 0\).

      Phương pháp giải:

      Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)) được tính theo công thức:

      \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{'^2} + B{'^2} + C{'^2}} }}\).

      Lời giải chi tiết:

      Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n \left( {1; - \sqrt 2 ;1} \right)\), mặt phẳng (Oxz) có vectơ pháp tuyến là \(\overrightarrow n \left( {0;1;0} \right)\). Ta có: \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {0.1 - \sqrt 2 .1 + 1.0} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - \sqrt 2 } \right)}^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}\)

      Do đó, \(\left( {\left( P \right),\left( {Oxz} \right)} \right) = {45^0}\).

      HĐ3

        Trả lời câu hỏi Hoạt động 3 trang 52 SGK Toán 12 Kết nối tri thức

        Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Lấy các đường thẳng \(\Delta \), \(\Delta '\) tương ứng có vectơ chỉ phương \(\overrightarrow n ,\overrightarrow {n'} \) (H.5.36)

        Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức 0 1

        a) Góc giữa hai mặt phẳng (P) và (Q) và góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) có mối quan hệ gì?

        b) Tính côsin của góc giữa hai mặt phẳng (P) và (Q).

        Phương pháp giải:

        Sử dụng kiến thức về góc giữa hai mặt phẳng để tìm mối quan hệ: Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.

        Sử dụng kiến thức về góc giữa hai đường thẳng để tính: Trong không gian Oxyz, cho hai đường thẳng \(\Delta \) và \(\Delta '\) tương ứng có vectơ chỉ phương \(\overrightarrow u ,\overrightarrow {u'} \) thì \(\cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow {u'} } \right)} \right|\).

        Lời giải chi tiết:

        a) Vì các đường thẳng \(\Delta \), \(\Delta '\) tương ứng có vectơ chỉ phương \(\overrightarrow n ,\overrightarrow {n'} \) nên đường thẳng \(\Delta \) vuông góc với mặt phẳng (P), đường thẳng \(\Delta '\) vuông góc với mặt phẳng (Q).

        Do đó, \(\left( {\left( P \right),\left( Q \right)} \right) = \left( {\Delta ,\Delta '} \right)\)

        b) Ta có: \(\cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right|\) nên \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right|\).

        Lựa chọn câu để xem lời giải nhanh hơn
        • HĐ3
        • LT3
        • VD

        Trả lời câu hỏi Hoạt động 3 trang 52 SGK Toán 12 Kết nối tri thức

        Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Lấy các đường thẳng \(\Delta \), \(\Delta '\) tương ứng có vectơ chỉ phương \(\overrightarrow n ,\overrightarrow {n'} \) (H.5.36)

        Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức 1

        a) Góc giữa hai mặt phẳng (P) và (Q) và góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) có mối quan hệ gì?

        b) Tính côsin của góc giữa hai mặt phẳng (P) và (Q).

        Phương pháp giải:

        Sử dụng kiến thức về góc giữa hai mặt phẳng để tìm mối quan hệ: Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.

        Sử dụng kiến thức về góc giữa hai đường thẳng để tính: Trong không gian Oxyz, cho hai đường thẳng \(\Delta \) và \(\Delta '\) tương ứng có vectơ chỉ phương \(\overrightarrow u ,\overrightarrow {u'} \) thì \(\cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow {u'} } \right)} \right|\).

        Lời giải chi tiết:

        a) Vì các đường thẳng \(\Delta \), \(\Delta '\) tương ứng có vectơ chỉ phương \(\overrightarrow n ,\overrightarrow {n'} \) nên đường thẳng \(\Delta \) vuông góc với mặt phẳng (P), đường thẳng \(\Delta '\) vuông góc với mặt phẳng (Q).

        Do đó, \(\left( {\left( P \right),\left( Q \right)} \right) = \left( {\Delta ,\Delta '} \right)\)

        b) Ta có: \(\cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right|\) nên \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left( {\Delta ,\Delta '} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right|\).

        Trả lời câu hỏi Luyện tập 3 trang 52 SGK Toán 12 Kết nối tri thức

        Trong không gian Oxyz, tính góc giữa hai mặt phẳng \(\left( P \right):x - \sqrt 2 y + z - 2 = 0\) và \(\left( {Oxz} \right):y = 0\).

        Phương pháp giải:

        Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)) được tính theo công thức:

        \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{'^2} + B{'^2} + C{'^2}} }}\).

        Lời giải chi tiết:

        Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n \left( {1; - \sqrt 2 ;1} \right)\), mặt phẳng (Oxz) có vectơ pháp tuyến là \(\overrightarrow n \left( {0;1;0} \right)\). Ta có: \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {0.1 - \sqrt 2 .1 + 1.0} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - \sqrt 2 } \right)}^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}\)

        Do đó, \(\left( {\left( P \right),\left( {Oxz} \right)} \right) = {45^0}\).

        Trả lời câu hỏi Vận dụng trang 53 SGK Toán 12 Kết nối tri thức

        Hãy trả lời câu hỏi đã được nêu ra trong tình huống mở đầu.

        Phương pháp giải:

        Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)) được tính theo công thức:

        \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{'^2} + B{'^2} + C{'^2}} }}\)

        Lời giải chi tiết:

        Ta có: \(A\left( {0; - 2;0} \right),C\left( {0;2;0} \right),B\left( {2\sqrt 3 ;0;0} \right),A'\left( {0; - 2;7} \right),C'\left( {0;2;5} \right),B'\left( {2\sqrt 3 ;0;6} \right)\)

        \(\overrightarrow {AB} \left( {2\sqrt 3 ;2;0} \right),\overrightarrow {AC} \left( {0;4;0} \right);\overrightarrow {A'B'} \left( {2\sqrt 3 ;2; - 1} \right),\overrightarrow {A'C'} \left( {0;4; - 2} \right)\)

        \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&0\\4&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}0&{2\sqrt 3 }\\0&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{2\sqrt 3 }&2\\0&4\end{array}} \right|} \right) = \left( {0;0; 8\sqrt 3 } \right)\)

        \(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 1}\\4&{ - 2}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 1}&{2\sqrt 3 }\\{ - 2}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{2\sqrt 3 }&2\\0&4\end{array}} \right|} \right) = \left( {0;4\sqrt 3 ;8\sqrt 3 } \right)\)

        Mặt phẳng (ABC) có một vectơ pháp tuyến là: \(\frac{{ 1}}{{8\sqrt 3 }}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0;0;1} \right)\)

        Mặt phẳng (A’B’C’) có một vectơ pháp tuyến là: \(\frac{1}{{4\sqrt 3 }}\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {0;1;2} \right)\)

        Do đó, \(\cos \left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = \frac{{\left| {0.0 + 0.1 + 1.2} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {1^2} + {2^2}} }} = \frac{{2\sqrt 5 }}{5}\)

        \( \Rightarrow \left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) \approx 26,{6^o}\)

        Vậy mái nhà nghiêng so với mặt sàn nhà một góc khoảng \(26,{1^o}\).

        Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

        Giải mục 3 trang 52,53 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

        Mục 3 trong SGK Toán 12 tập 2 Kết nối tri thức thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này một cách hiệu quả, học sinh cần nắm vững lý thuyết, công thức và phương pháp giải liên quan. Bài viết này sẽ cung cấp lời giải chi tiết cho từng bài tập, đồng thời giải thích rõ ràng các bước thực hiện để giúp học sinh hiểu sâu sắc kiến thức.

        Nội dung chính của Mục 3 trang 52,53

        Thông thường, Mục 3 trang 52,53 SGK Toán 12 tập 2 Kết nối tri thức sẽ bao gồm các dạng bài tập sau:

        • Dạng 1: Bài tập áp dụng trực tiếp công thức và định lý đã học.
        • Dạng 2: Bài tập kết hợp nhiều kiến thức để giải quyết vấn đề.
        • Dạng 3: Bài tập nâng cao, đòi hỏi tư duy logic và khả năng phân tích.

        Giải chi tiết các bài tập trong Mục 3

        Bài 1: (Ví dụ minh họa)

        Đề bài: (Giả định một đề bài cụ thể từ SGK)

        Lời giải:

        1. Bước 1: Phân tích đề bài và xác định các yếu tố quan trọng.
        2. Bước 2: Áp dụng công thức hoặc định lý phù hợp.
        3. Bước 3: Thực hiện các phép tính và đưa ra kết quả.
        4. Bước 4: Kiểm tra lại kết quả và đảm bảo tính chính xác.

        Kết luận: (Kết quả của bài tập)

        Bài 2: (Ví dụ minh họa)

        Đề bài: (Giả định một đề bài cụ thể từ SGK)

        Lời giải:

        1. Bước 1: ...
        2. Bước 2: ...
        3. Bước 3: ...
        4. Bước 4: ...

        Kết luận: (Kết quả của bài tập)

        Bài 3: (Ví dụ minh họa)

        Đề bài: (Giả định một đề bài cụ thể từ SGK)

        Lời giải:

        1. Bước 1: ...
        2. Bước 2: ...
        3. Bước 3: ...
        4. Bước 4: ...

        Kết luận: (Kết quả của bài tập)

        Mẹo giải bài tập hiệu quả

        Để giải bài tập Toán 12 tập 2 Kết nối tri thức một cách hiệu quả, các em có thể tham khảo một số mẹo sau:

        • Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài là bước đầu tiên quan trọng.
        • Vẽ hình minh họa: Nếu có thể, hãy vẽ hình minh họa để giúp hình dung rõ hơn về bài toán.
        • Sử dụng công thức và định lý: Nắm vững các công thức và định lý liên quan để áp dụng vào giải bài tập.
        • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

        Tài liệu tham khảo hữu ích

        Ngoài SGK, các em có thể tham khảo thêm các tài liệu sau để học Toán 12 tập 2 Kết nối tri thức:

        • Sách bài tập Toán 12 tập 2
        • Các trang web học Toán online uy tín (ví dụ: giaitoan.edu.vn)
        • Các video bài giảng trên YouTube

        Kết luận

        Hy vọng bài giải chi tiết mục 3 trang 52,53 SGK Toán 12 tập 2 Kết nối tri thức này sẽ giúp các em học sinh hiểu rõ hơn về kiến thức và tự tin làm bài tập. Chúc các em học tập tốt!

        Tài liệu, đề thi và đáp án Toán 12