Bài tập 2.19 trang 65 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Trong vận dụng 2, hãy giải thích vì sao tại mỗi thời điểm chiếc máy bay di chuyển trên đường băng thì tọa độ của nó luôn có dạng (x; y; 0) với x, y là hai số thực nào đó.
Đề bài
Trong vận dụng 2, hãy giải thích vì sao tại mỗi thời điểm chiếc máy bay di chuyển trên đường băng thì tọa độ của nó luôn có dạng (x; y; 0) với x, y là hai số thực nào đó.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hệ tọa độ trong không gian để giải thích: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt là các vectơ đơn vị trên các trục Ox, Oy, Oz. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.
Lời giải chi tiết
Khi máy bay di chuyển trên đường băng, tức là máy bay di chuyển ở trên mặt đất, tức là thuộc mặt phẳng (Oxy). Do đó, máy bay khi di chuyển trên đường băng thì tọa độ của nó luôn có dạng (x; y; 0) với x, y là hai số thực nào đó.
Bài tập 2.19 SGK Toán 12 tập 1 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến đạo hàm của hàm số. Để giải bài tập này, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là lời giải chi tiết bài tập 2.19 trang 65 SGK Toán 12 tập 1 Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.
Sử dụng quy tắc đạo hàm của hàm số đa thức, ta có:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
Vậy:
Kết luận: Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Để giải tốt các bài tập về đạo hàm, các em cần:
Giaitoan.edu.vn hy vọng với lời giải chi tiết này, các em sẽ hiểu rõ hơn về cách giải bài tập 2.19 trang 65 SGK Toán 12 tập 1 Kết nối tri thức. Chúc các em học tập tốt!
Ngoài bài tập 2.19, các em có thể tham khảo thêm các bài tập khác trong SGK Toán 12 tập 1 Kết nối tri thức để củng cố kiến thức về đạo hàm. Các em cũng có thể tìm kiếm các tài liệu tham khảo khác trên internet hoặc tại các thư viện để nâng cao kiến thức của mình.