Logo Header
  1. Môn Toán
  2. Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4m; 4,4m; 4,8m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

Đề bài

Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2 m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4 m; 4,4 m; 4,8 m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

Phương pháp giải - Xem chi tiếtGiải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n'} = \left( {A';B';C'} \right)\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)) được tính theo công thức:

\(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{'^2} + B{'^2} + C{'^2}} }}\).

Lời giải chi tiết

Gọi 3 điểm cách nhau 2m trên mặt nước là A, B, C. Vị trí thả quả rọi xuống đáy bể lần lượt là A’, B’, C’ sao cho AA' = 4 m, BB' = 4,4 m, CC' = 4,8 m. Chọn gốc tọa độ O tại trung điểm AB.

Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức 2

Khi đó, A(0;1;0) B(0;-1;0) C(\(\sqrt 3 \);0;0); A’(0;1;4); B’(0;-1;4,4); C’ (\(\sqrt 3 \);0; 4,8).

Ta có: \(\overrightarrow {A'B'} = \left( {0; - 2;0,4} \right);\overrightarrow {B'C'} = \left( {\sqrt 3 ;1;0,4} \right)\).

Mặt phẳng (A’B’C’) nhận \(\left[ {\overrightarrow {A'B'} ;\overrightarrow {B'C'} } \right]\) làm một vectơ pháp tuyến.

Ta có: \(\left[ {\overrightarrow {A'B'} ;\overrightarrow {B'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&{0,4}\\1&{0,4}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{0,4}&0\\{0,4}&{\sqrt 3 }\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 2}\\{\sqrt 3 }&1\end{array}} \right|} \right) = \left( {\frac{{ - 6}}{5};\frac{{2\sqrt 3 }}{5};2\sqrt 3 } \right)\).

Mặt phẳng đáy bể là mặt phẳng (A’ B’ C’) nên có vectơ pháp tuyến là \(\overrightarrow n = \left( { - \frac{6}{5};\frac{{2\sqrt 3 }}{5};2\sqrt 3 } \right)\).

Mặt phẳng ngang (mặt nước) là mặt phẳng (Oxy) có vectơ pháp tuyến là \(\overrightarrow k {\rm{ = }}\left( {0;0;1} \right)\).

Nên góc giữa mặt phẳng đáy bể và mặt phẳng ngang là:

\(\cos \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {\frac{{ - 6}}{5}.0 + \frac{{2\sqrt 3 }}{5}.0 + 2\sqrt 3 .1} \right|}}{{\sqrt {{{\left( {\frac{{ - 6}}{5}} \right)}^2} + {{\left( {\frac{{2\sqrt 3 }}{5}} \right)}^2} + {{\left( {2\sqrt 3 } \right)}^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{5\sqrt {29} }}{{29}}\).

 \( \Rightarrow \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) \approx 21,{8^0}\).

Vậy đáy bể nghiêng so với mặt phẳng nằm ngang một góc khoảng 21,8 độ.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

Bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về tích phân. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về nguyên hàm, tích phân xác định để tính diện tích hình phẳng hoặc thể tích vật thể. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các khái niệm cơ bản và các công thức liên quan.

Các kiến thức cần nắm vững trước khi giải bài tập

  • Nguyên hàm: Hiểu rõ định nghĩa nguyên hàm, các tính chất của nguyên hàm và cách tìm nguyên hàm của một hàm số.
  • Tích phân xác định: Nắm vững định nghĩa tích phân xác định, các tính chất của tích phân xác định và cách tính tích phân xác định bằng phương pháp Newton-Leibniz.
  • Ứng dụng của tích phân: Hiểu rõ cách sử dụng tích phân để tính diện tích hình phẳng và thể tích vật thể.

Lời giải chi tiết bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài tập 5.50. Giả sử bài tập yêu cầu tính diện tích hình phẳng giới hạn bởi các đường y = f(x), y = g(x), x = a và x = b. Lời giải sẽ bao gồm các bước sau:

  1. Vẽ đồ thị của các hàm số: Vẽ đồ thị của các hàm số y = f(x) và y = g(x) để xác định vị trí tương đối của chúng và xác định khoảng tích phân.
  2. Xác định khoảng tích phân: Xác định các điểm giao nhau của các đường y = f(x) và y = g(x) để xác định các cận tích phân a và b.
  3. Lập công thức tính diện tích: Sử dụng công thức tính diện tích hình phẳng: S = ∫ab |f(x) - g(x)| dx.
  4. Tính tích phân: Tính tích phân xác định ∫ab |f(x) - g(x)| dx để tìm ra diện tích hình phẳng.

Ví dụ minh họa

Giả sử bài tập 5.50 yêu cầu tính diện tích hình phẳng giới hạn bởi các đường y = x2, y = 4x và x = 0. Ta thực hiện các bước sau:

  1. Vẽ đồ thị: Vẽ đồ thị của hàm số y = x2 và y = 4x.
  2. Xác định khoảng tích phân: Tìm giao điểm của hai đường: x2 = 4x => x(x-4) = 0 => x = 0 hoặc x = 4. Vậy a = 0 và b = 4.
  3. Lập công thức: S = ∫04 (4x - x2) dx
  4. Tính tích phân: S = [2x2 - (x3/3)]04 = (2*42 - (43/3)) - (0) = 32 - 64/3 = 32/3

Vậy diện tích hình phẳng là 32/3.

Lưu ý khi giải bài tập

  • Chú ý đến dấu của hàm số: Khi tính diện tích hình phẳng, cần chú ý đến dấu của hàm số để đảm bảo diện tích luôn dương.
  • Kiểm tra lại kết quả: Sau khi tính tích phân, nên kiểm tra lại kết quả bằng cách vẽ đồ thị hoặc sử dụng các phương pháp khác để đảm bảo tính chính xác.
  • Luyện tập thường xuyên: Để nắm vững kiến thức và kỹ năng giải bài tập, cần luyện tập thường xuyên với nhiều dạng bài tập khác nhau.

Các bài tập tương tự

Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 12 tập 2 - Kết nối tri thức hoặc trên các trang web học toán online khác.

Kết luận

Bài tập 5.50 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về tích phân để giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 12