Logo Header
  1. Môn Toán
  2. Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Cho hàm số f(x) liên tục trên \(\mathbb{R}\). Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 1\) và \(x = 4\) như hình bên. Khẳng định nào dưới đây là đúng? A. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \). B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \). C. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).

Đề bài

Cho hàm số f(x) liên tục trên \(\mathbb{R}\). Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 1\) và \(x = 4\) như hình bên.

Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức 1

Khẳng định nào dưới đây là đúng?

A. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).

B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \).

C. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).

D. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \).

Phương pháp giải - Xem chi tiếtGiải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức 2

Sử dụng kiến thức về diện tích hình phẳng giới hạn bởi hai đồ thị hàm số và đường thẳng \(x = a,x = b\) để tính: Diện tích S của hình phẳng giới hạn đồ thị của hai hàm số f(x), g(x) liên tục trên đoạn [a; b] và hai đường thẳng \(x = a,x = b\), được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Lời giải chi tiết

Diện tích hình phẳng cần tính là: \(S = \int\limits_{ - 1}^4 {\left| {f\left( x \right) - 0} \right|dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \)

Chọn B

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

Bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và công thức đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập 7 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, hoặc giải các bài toán liên quan đến tốc độ thay đổi.

Phương pháp giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Để giải quyết bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Xác định đúng công thức đạo hàm cần sử dụng: Dựa vào dạng của hàm số, chọn công thức đạo hàm phù hợp.
  2. Thực hiện các phép biến đổi đại số một cách cẩn thận: Tránh sai sót trong quá trình tính toán.
  3. Kiểm tra lại kết quả: Đảm bảo kết quả tính toán là chính xác.
  4. Sử dụng các công cụ hỗ trợ: Nếu cần thiết, bạn có thể sử dụng máy tính bỏ túi hoặc các phần mềm tính toán để kiểm tra kết quả.

Ví dụ minh họa giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = (x3)' + (2x2)' - (5x)' + (1)'

f'(x) = 3x2 + 4x - 5 + 0

f'(x) = 3x2 + 4x - 5

Lưu ý khi giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Khi giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức, bạn cần lưu ý những điều sau:

  • Nắm vững các định nghĩa và tính chất của đạo hàm.
  • Hiểu rõ các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.
  • Tham khảo các tài liệu học tập và các nguồn thông tin trên internet để mở rộng kiến thức.

Tổng kết

Bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách áp dụng các phương pháp giải phù hợp và luyện tập thường xuyên, bạn có thể hoàn thành tốt bài tập này và đạt kết quả cao trong môn Toán.

Bảng tổng hợp các công thức đạo hàm thường dùng

Hàm sốĐạo hàm
y = c (hằng số)y' = 0
y = xny' = nxn-1
y = sinxy' = cosx
y = cosxy' = -sinx

Tài liệu, đề thi và đáp án Toán 12