Bài tập 2.4 trang 58 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản và các quy tắc tính đạo hàm để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \); b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \); c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)
Đề bài
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \);b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \);c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)
Phương pháp giải - Xem chi tiết
a, b) Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
c) Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Lời giải chi tiết
a) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \)
Vì CDD’C’ là hình bình hành nên \(\overrightarrow {C'D'} = \overrightarrow {CD} ,\overrightarrow {DD'} = \overrightarrow {CC'} \)
Ta có: \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {DC} + \overrightarrow {CC'} + \overrightarrow {CD} = \left( {\overrightarrow {CD} + \overrightarrow {DC} } \right) + \overrightarrow {CC'} = \overrightarrow {CC'} \)
b) Ta có: \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow {AB} + \overrightarrow {C'D'} = \overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow 0 \)
c) Vì ABCD là hình bình hành nên \(\overrightarrow {CB} + \overrightarrow {CD} = \overrightarrow {CA} \)
Vì A’ACC’ là hình bình hành nên \(\overrightarrow {CA} + \overrightarrow {CC'} = \overrightarrow {CA'} \)
\(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = - \left( {\overrightarrow {CB} + \overrightarrow {CD} } \right) - \overrightarrow {CC'} = - \overrightarrow {CA} - \overrightarrow {CC'} = - \left( {\overrightarrow {CA} + \overrightarrow {CC'} } \right) = - \overrightarrow {CA'} = \overrightarrow {A'C} \)
Bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc khảo sát hàm số.
Trước khi đi vào giải bài tập, chúng ta cùng xem lại đề bài của bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức:
(Đề bài cụ thể của bài tập 2.4 sẽ được trình bày tại đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x + 2. Tìm đạo hàm f'(x) và xác định các điểm cực trị của hàm số.)
Để giải bài tập về đạo hàm và ứng dụng, chúng ta có thể áp dụng các phương pháp sau:
Dưới đây là lời giải chi tiết bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức:
(Lời giải chi tiết của bài tập 2.4 sẽ được trình bày tại đây, bao gồm các bước tính toán, giải thích và kết luận.)
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập về đạo hàm và ứng dụng, chúng ta cùng xem xét một số ví dụ minh họa và bài tập tương tự:
Ví dụ 1: (Đề bài ví dụ 1 và lời giải chi tiết)
Ví dụ 2: (Đề bài ví dụ 2 và lời giải chi tiết)
Bài tập 1: (Đề bài bài tập 1)
Bài tập 2: (Đề bài bài tập 2)
Khi giải bài tập về đạo hàm và ứng dụng, các em học sinh cần lưu ý những điều sau:
Hy vọng rằng với hướng dẫn chi tiết và dễ hiểu này, các em học sinh sẽ tự tin giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức và các bài tập tương tự. Chúc các em học tập tốt!
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.