Bài tập 5.17 trang 49 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 5.17, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó thuộc hai đường thẳng lần lượt có phương trình: ({Delta _1}:frac{{x - 1}}{2} = frac{y}{{ - 1}} = frac{{z + 1}}{3}) và ({Delta _2}:frac{{x - 3}}{{ - 1}} = frac{{y + 1}}{1} = frac{z}{1}). a) Hai con đường trên có vuông góc với nhau hay không? b) Nút giao thông trên có phải là nút giao thông khác mức hay không?
Đề bài
Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó thuộc hai đường thẳng lần lượt có phương trình: \({\Delta _1}:\frac{{x - 1}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{3}\) và \({\Delta _2}:\frac{{x - 3}}{{ - 1}} = \frac{{y + 1}}{1} = \frac{z}{1}\).
a) Hai con đường trên có vuông góc với nhau hay không?
b) Nút giao thông trên có phải là nút giao thông khác mức hay không?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hai đường thẳng vuông góc với nhau để chứng minh: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\)
Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để xét xem nút giao thông có phải là nút giao thông khác mức không: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\) và tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó:
\({\Delta _1}//{\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1}\not \in {\Delta _2}\)
\({\Delta _1} \equiv {\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1} \in {\Delta _2}\)
\({\Delta _1}\) và \({\Delta _2}\) chéo nhau \( \Leftrightarrow \overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne 0\)
\({\Delta _1}\) và \({\Delta _2}\) cắt nhau \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0\end{array} \right.\)
Lời giải chi tiết
a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} \left( {2; - 1;3} \right)\).
Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 1;1;1} \right)\).
Ta có: \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 2.\left( { - 1} \right) - 1.1 + 3.1 = 0\) nên \(\overrightarrow {{u_1}} \bot \overrightarrow {{u_2}} \). Do đó, hai con đường trên vuông góc với nhau.
b) Đường thẳng \({\Delta _1}\) đi qua điểm \(A\left( {1;0; - 1} \right)\), đường thẳng \({\Delta _2}\) đi qua điểm \(B\left( {3; - 1;0} \right)\)
Vì \(\frac{2}{{ - 1}} \ne \frac{{ - 1}}{1}\) nên \(\overrightarrow {{u_1}} \) không cùng phương với \(\overrightarrow {{u_2}} \)
Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&3\\1&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}3&2\\1&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = \left( { - 4; - 5;1} \right) \ne \overrightarrow 0 \), \(\overrightarrow {AB} \left( {2; - 1;1} \right)\)
Vì \(\overrightarrow {AB} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 4} \right).2 + \left( { - 5} \right).\left( { - 1} \right) + 1.1 = - 2 \ne 0\) nên \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.
Do đó, nút giao thông trên là nút giao thông khác mức.
Bài tập 5.17 trang 49 SGK Toán 12 tập 2 thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong Toán học. Đây là một phần quan trọng trong chương trình Toán 12, giúp học sinh hiểu rõ hơn về sự thay đổi của hàm số và ứng dụng vào việc giải quyết các bài toán thực tế.
Bài tập 5.17 thường yêu cầu học sinh:
Để giải bài tập 5.17 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
(Nội dung lời giải chi tiết bài tập 5.17 sẽ được trình bày tại đây. Bao gồm các bước giải, giải thích rõ ràng và dễ hiểu. Ví dụ:)
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm cực trị của hàm số.
Lời giải:
Vậy hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, y = -2.
Để củng cố kiến thức về đạo hàm và ứng dụng, học sinh có thể tham khảo các bài tập tương tự sau:
Khi giải bài tập về đạo hàm, học sinh cần lưu ý:
Bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.