Logo Header
  1. Môn Toán
  2. Giải bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập 5.17 trang 49 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 5.17, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó thuộc hai đường thẳng lần lượt có phương trình: ({Delta _1}:frac{{x - 1}}{2} = frac{y}{{ - 1}} = frac{{z + 1}}{3}) và ({Delta _2}:frac{{x - 3}}{{ - 1}} = frac{{y + 1}}{1} = frac{z}{1}). a) Hai con đường trên có vuông góc với nhau hay không? b) Nút giao thông trên có phải là nút giao thông khác mức hay không?

Đề bài

Tại một nút giao thông có hai con đường. Trên thiết kế, trong không gian Oxyz, hai con đường đó thuộc hai đường thẳng lần lượt có phương trình: \({\Delta _1}:\frac{{x - 1}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{3}\) và \({\Delta _2}:\frac{{x - 3}}{{ - 1}} = \frac{{y + 1}}{1} = \frac{z}{1}\).

a) Hai con đường trên có vuông góc với nhau hay không?

b) Nút giao thông trên có phải là nút giao thông khác mức hay không?

Phương pháp giải - Xem chi tiếtGiải bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về hai đường thẳng vuông góc với nhau để chứng minh: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, \({\Delta _1} \bot {\Delta _2} \Leftrightarrow \overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0 \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\)

Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để xét xem nút giao thông có phải là nút giao thông khác mức không: Trong không gian Oxyz, cho hai đường thẳng \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({A_1}\left( {{x_1};{y_1};{z_1}} \right),{A_2}\left( {{x_2};{y_2};{z_2}} \right)\) và tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó:

\({\Delta _1}//{\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1}\not \in {\Delta _2}\)

\({\Delta _1} \equiv {\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \) cùng phương với \(\overrightarrow {{u_2}} \) và \({A_1} \in {\Delta _2}\)

\({\Delta _1}\) và \({\Delta _2}\) chéo nhau \( \Leftrightarrow \overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne 0\)

\({\Delta _1}\) và \({\Delta _2}\) cắt nhau \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\overrightarrow {{A_1}{A_2}} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 0\end{array} \right.\)

Lời giải chi tiết

a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} \left( {2; - 1;3} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} \left( { - 1;1;1} \right)\).

Ta có: \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 2.\left( { - 1} \right) - 1.1 + 3.1 = 0\) nên \(\overrightarrow {{u_1}} \bot \overrightarrow {{u_2}} \). Do đó, hai con đường trên vuông góc với nhau.

b) Đường thẳng \({\Delta _1}\) đi qua điểm \(A\left( {1;0; - 1} \right)\), đường thẳng \({\Delta _2}\) đi qua điểm \(B\left( {3; - 1;0} \right)\)

Vì \(\frac{2}{{ - 1}} \ne \frac{{ - 1}}{1}\) nên \(\overrightarrow {{u_1}} \) không cùng phương với \(\overrightarrow {{u_2}} \)

Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&3\\1&1\end{array}} \right|,\left| {\begin{array}{*{20}{c}}3&2\\1&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = \left( { - 4; - 5;1} \right) \ne \overrightarrow 0 \), \(\overrightarrow {AB} \left( {2; - 1;1} \right)\)

Vì \(\overrightarrow {AB} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 4} \right).2 + \left( { - 5} \right).\left( { - 1} \right) + 1.1 = - 2 \ne 0\) nên \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

Do đó, nút giao thông trên là nút giao thông khác mức.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức: Đạo hàm và ứng dụng

Bài tập 5.17 trang 49 SGK Toán 12 tập 2 thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong Toán học. Đây là một phần quan trọng trong chương trình Toán 12, giúp học sinh hiểu rõ hơn về sự thay đổi của hàm số và ứng dụng vào việc giải quyết các bài toán thực tế.

Nội dung bài tập 5.17

Bài tập 5.17 thường yêu cầu học sinh:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Khảo sát hàm số.
  • Giải các bài toán tối ưu hóa.

Phương pháp giải bài tập 5.17

Để giải bài tập 5.17 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  1. Khái niệm đạo hàm.
  2. Các quy tắc tính đạo hàm.
  3. Điều kiện cần và đủ để hàm số đạt cực trị.
  4. Cách khảo sát hàm số bằng đạo hàm.

Lời giải chi tiết bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức

(Nội dung lời giải chi tiết bài tập 5.17 sẽ được trình bày tại đây. Bao gồm các bước giải, giải thích rõ ràng và dễ hiểu. Ví dụ:)

Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm bậc nhất: y' = 3x2 - 6x
  2. Tìm điểm dừng: y' = 0 ⇔ 3x2 - 6x = 0 ⇔ x = 0 hoặc x = 2
  3. Tính đạo hàm bậc hai: y'' = 6x - 6
  4. Kiểm tra điều kiện cực trị:
    • Tại x = 0: y'' = -6 < 0 ⇒ Hàm số đạt cực đại tại x = 0. Giá trị cực đại là y = 2.
    • Tại x = 2: y'' = 6 > 0 ⇒ Hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y = -2.

Vậy hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, y = -2.

Các bài tập tương tự

Để củng cố kiến thức về đạo hàm và ứng dụng, học sinh có thể tham khảo các bài tập tương tự sau:

  • Bài tập 5.18 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức
  • Bài tập 5.19 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức
  • Các bài tập trong sách bài tập Toán 12 tập 2.

Lưu ý khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, học sinh cần lưu ý:

  • Nắm vững các quy tắc tính đạo hàm.
  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Sử dụng đạo hàm bậc hai để xác định tính chất của điểm dừng.
  • Biết cách ứng dụng đạo hàm vào việc giải quyết các bài toán thực tế.

Kết luận

Bài tập 5.17 trang 49 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12