Bài tập 1.5 trang 13 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức, tập trung vào việc rèn luyện kỹ năng về giới hạn của hàm số. Bài tập này thường yêu cầu học sinh vận dụng các định nghĩa và tính chất của giới hạn để tính toán và chứng minh.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 1.5 trang 13 SGK Toán 12 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số (Nleft( t right) = frac{{25t + 10}}{{t + 5}},t ge 0), trong đó N(t) được tính bằng nghìn người. a) Tính số dân của thị trấn đó vào các năm 2000 và 2015. b) Tính đạo hàm N’(t) và (mathop {lim }limits_{t to + infty } Nleft( t right)). Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.
Đề bài
Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số \(N\left( t \right) = \frac{{25t + 10}}{{t + 5}},t \ge 0\), trong đó N(t) được tính bằng nghìn người.a) Tính số dân của thị trấn đó vào các năm 2000 và 2015. b) Tính đạo hàm N’(t) và \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right)\). Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định lí về tính đồng biến của hàm số để chứng minh: Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng K. Nếu \(f'\left( x \right) > 0\) với mọi \(x \in K\) thì hàm số \(f\left( x \right)\) đồng biến trên khoảng K.
Lời giải chi tiết
a) Dân số của thị trấn đó vào năm 2000 là: \(N\left( 0 \right) = \frac{{25.0 + 10}}{{0 + 5}} = \frac{{10}}{5} = 2\) (nghìn người).
Dân số của thị trấn đó vào năm 2015 là: \(N\left( {15} \right) = \frac{{25.15 + 10}}{{15 + 5}} = 19,25\) (nghìn người).
b) Ta có:
\(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{25t + 10}}{{t + 5}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{25 + \frac{{10}}{t}}}{{1 + \frac{5}{t}}} = 25\).
\(N'(t) = \left[ {\frac{{25t + 10}}{{t + 5}}} \right]' = \frac{{(25t + 10)'(t + 5) - (25t + 10)(t + 5)'}}{{{{(t + 5)}^2}}}\)
\( = \frac{{25(t + 5) - (25t + 10)}}{{{{(t + 5)}^2}}} = \frac{{115}}{{{{(t + 5)}^2}}} > 0\) \(\forall t \in D\).
Vì \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right) = 25\) và \(N'(t) > 0\) nên dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua ngưỡng 25 nghìn người.
Bài tập 1.5 SGK Toán 12 tập 1 Kết nối tri thức yêu cầu tính các giới hạn sau:
Ta có thể phân tích tử thức:
x^2 - 3x + 2 = (x - 1)(x - 2)
Do đó:
lim (x→2) (x^2 - 3x + 2) / (x - 2) = lim (x→2) (x - 1)(x - 2) / (x - 2) = lim (x→2) (x - 1) = 2 - 1 = 1
Ta có thể phân tích tử thức:
x^3 + 1 = (x + 1)(x^2 - x + 1)
Do đó:
lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3
Để tính giới hạn này, ta có thể nhân cả tử và mẫu với liên hợp của tử thức:
lim (x→0) (√(x+1) - 1) / x = lim (x→0) [(√(x+1) - 1)(√(x+1) + 1)] / [x(√(x+1) + 1)] = lim (x→0) (x + 1 - 1) / [x(√(x+1) + 1)] = lim (x→0) x / [x(√(x+1) + 1)] = lim (x→0) 1 / (√(x+1) + 1) = 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2
Vậy, kết quả của các giới hạn là:
Để giải các bài tập về giới hạn, học sinh cần nắm vững các kiến thức sau:
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong SGK Toán 12 tập 1 Kết nối tri thức và các đề thi thử Toán 12.
Khi giải bài tập về giới hạn, cần chú ý kiểm tra xem mẫu số có bằng 0 hay không. Nếu mẫu số bằng 0, cần phải phân tích tử thức và mẫu thức để đơn giản biểu thức trước khi tính giới hạn.