Bài tập 4.2 trang 11 SGK Toán 12 tập 2 thuộc chương trình Toán học lớp 12, Kết nối tri thức. Bài tập này thường liên quan đến các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 4.2 trang 11 SGK Toán 12 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Tìm nguyên hàm của các hàm số sau: a) \(f\left( x \right) = 3{x^2} + 2x - 1\); b) \(f\left( x \right) = {x^3} - x\); c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\); d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).
Đề bài
Tìm nguyên hàm của các hàm số sau:
a) \(f\left( x \right) = 3{x^2} + 2x - 1\);
b) \(f\left( x \right) = {x^3} - x\);
c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\);
d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)
Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)
Sử dụng kiến thức về nguyên hàm của hàm số lũy thừa để tính:
\(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\left( {\alpha \ne - 1} \right)\)
Lời giải chi tiết
a) \(\int {\left( {3{x^2} + 2x - 1} \right)} dx = 3\int {{x^2}} dx + 2\int x dx - \int 1 dx = {x^3} + {x^2} - x + C\)
b) \(\int {\left( {{x^3} - x} \right)} dx = \int {{x^3}} dx - \int x dx = \frac{{{x^4}}}{4} - \frac{{{x^2}}}{2} + C\)
c) \(\int {{{\left( {2x + 1} \right)}^2}} dx = \int {\left( {4{x^2} + 4x + 1} \right)} dx = 4\int {{x^2}} dx + 4\int x dx + \int 1 dx = \frac{{4{x^3}}}{3} + 2{x^2} + x + C\)
d) \(\int {{{\left( {2x - \frac{1}{x}} \right)}^2}} dx = \int {\left( {4{x^2} - 4 + \frac{1}{{{x^2}}}} \right)} dx = 4\int {{x^2}} dx + \int {{x^{ - 2}}} dx - 4\int 1 dx = \frac{{4{x^3}}}{3} - \frac{1}{x} - 4x + C\)
Bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán cụ thể. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Để minh họa, chúng ta sẽ cùng giải một bài tập cụ thể. Giả sử bài tập 4.2 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2.
y' = 3x2 - 6x
y'' = 6x - 6
Giải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy x = 0 hoặc x = 2
Xét dấu y':
Giải phương trình y'' = 0:
6x - 6 = 0
x = 1
Xét dấu y'':
Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số y = x3 - 3x2 + 2.
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết trên, các em học sinh có thể giải bài tập này một cách dễ dàng và hiệu quả.