Bài tập 2.34 trang 74 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 2;2;2} \right),\overrightarrow b = \left( {1; - 1; - 2} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằng A. \(\frac{{ - 2\sqrt 2 }}{3}\). B. \(\frac{{2\sqrt 2 }}{3}\). C. \(\frac{{\sqrt 2 }}{3}\). D. \(\frac{{ - \sqrt 2 }}{3}\).
Đề bài
Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 2;2;2} \right),\overrightarrow b = \left( {1; - 1; - 2} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằngA. \(\frac{{ - 2\sqrt 2 }}{3}\).B. \(\frac{{2\sqrt 2 }}{3}\).C. \(\frac{{\sqrt 2 }}{3}\).D. \(\frac{{ - \sqrt 2 }}{3}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về côsin góc của 2 vectơ trong không gian để tính: Nếu \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\) là hai vectơ khác \(\overrightarrow 0 \) thì \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{xx' + yy' + zz'}}{{\sqrt {{x^2} + {y^2} + {z^2}} .\sqrt {x{'^2} + y{'^2} + z{'^2}} }}\)
Lời giải chi tiết
\(\cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\left( { - 2} \right).1 + 2.\left( { - 1} \right) + 2.\left( { - 2} \right)}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {2^2} + } .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{ - 2\sqrt 2 }}{3}\)
Chọn A
Bài tập 2.34 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
(Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số y = f(x) có đạo hàm f'(x) = (x-1)^2(x+2). Hỏi hàm số y = f(x) đồng biến trên khoảng nào?)
Để giải bài tập này, chúng ta cần thực hiện các bước sau:
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và kết luận cuối cùng. Ví dụ:
f'(x) = (x-1)^2(x+2). Để f'(x) = 0 thì x = 1 hoặc x = -2.
Lập bảng xét dấu f'(x):
x | -∞ | -2 | 1 | +∞ |
---|---|---|---|---|
(x-1)^2 | + | + | + | + |
x+2 | - | + | + | + |
f'(x) | - | + | + | + |
f(x) | - | + | + | + |
Vậy hàm số y = f(x) nghịch biến trên khoảng (-∞; -2) và đồng biến trên khoảng (-2; +∞).
Để củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm, bạn có thể tham khảo các bài tập tương tự sau:
Bài tập 2.34 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và các lưu ý trên, các em học sinh sẽ tự tin hơn trong quá trình học tập và làm bài tập.