Logo Header
  1. Môn Toán
  2. Giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 1.42 trang 44 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi hiểu rằng việc giải các bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tìm các tiệm cận của mỗi đồ thị hàm số sau: a) \(y = \frac{{3x - 2}}{{x + 1}}\); b) \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\).

Đề bài

Tìm các tiệm cận của mỗi đồ thị hàm số sau:a) \(y = \frac{{3x - 2}}{{x + 1}}\);b) \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\).

Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)

Sử dụng kiến thức về khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\).

Lời giải chi tiết

a) Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{3x - 2}}{{x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{3x - 2}}{{x + 1}} = + \infty \)

Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) là đường thẳng \(x = - 1\)

Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x - 2}}{{x + 1}} = 3\); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x - 2}}{{x + 1}} = 3\) nên tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x - 2}}{{x + 1}}\) đường thẳng \(y = 3\).

b) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \)

Vậy tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(x = \frac{1}{2}\).

Ta có: \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}} = \frac{x}{2} + \frac{5}{4} + \frac{1}{{4\left( {2x - 1} \right)}}\)

Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\), \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {\frac{x}{2} + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{4\left( {2x - 1} \right)}} = 0\)

Vậy tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) là đường thẳng \(y = \frac{x}{2} + \frac{5}{4}\)

Ta có: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 2x - 1}}{{2x - 1}} = + \infty \) nên đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{2x - 1}}\) không có tiệm cận ngang.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Để giải bài tập này, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Phân tích đề bài

Trước khi bắt đầu giải bài tập, chúng ta cần phân tích đề bài một cách kỹ lưỡng để xác định rõ yêu cầu của bài toán. Bài tập 1.42 trang 44 SGK Toán 12 tập 1 thường yêu cầu học sinh thực hiện các bước sau:

  1. Xác định hàm số cần xét.
  2. Tính đạo hàm của hàm số.
  3. Tìm các điểm cực trị của hàm số.
  4. Xác định khoảng đơn điệu của hàm số.
  5. Giải các bài toán liên quan đến ứng dụng của đạo hàm.

Lời giải chi tiết bài tập 1.42 trang 44 SGK Toán 12 tập 1

(Nội dung lời giải chi tiết bài tập 1.42 sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, các công thức sử dụng và các giải thích rõ ràng. Ví dụ:)

Ví dụ: Giả sử bài tập yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị: Sử dụng dấu của đạo hàm cấp hai để xác định loại cực trị tại các điểm x = 0 và x = 2.
  4. Kết luận: Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 1.42 trang 44 SGK Toán 12 tập 1, còn rất nhiều bài tập tương tự yêu cầu học sinh vận dụng kiến thức về đạo hàm. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:

  • Bài tập tìm cực trị của hàm số: Sử dụng các bước đã trình bày ở trên để tìm cực trị của hàm số.
  • Bài tập xét tính đơn điệu của hàm số: Xác định dấu của đạo hàm trên các khoảng xác định của hàm số để xác định khoảng đơn điệu.
  • Bài tập tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn: Tính giá trị của hàm số tại các điểm cực trị và tại các đầu mút của đoạn để tìm giá trị lớn nhất và giá trị nhỏ nhất.

Mẹo học tập hiệu quả

Để học tập môn Toán 12 hiệu quả, đặc biệt là các bài tập về đạo hàm, bạn có thể tham khảo một số mẹo sau:

  • Nắm vững các khái niệm cơ bản về đạo hàm.
  • Luyện tập thường xuyên các bài tập về đạo hàm.
  • Sử dụng các công cụ hỗ trợ học tập như máy tính bỏ túi, phần mềm giải toán.
  • Tham gia các diễn đàn, nhóm học tập để trao đổi kiến thức và kinh nghiệm.

Tổng kết

Bài tập 1.42 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các hướng dẫn trên, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12. Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục kiến thức!

Khái niệmGiải thích
Đạo hàmTốc độ thay đổi tức thời của hàm số tại một điểm.
Điểm cực trịĐiểm mà tại đó hàm số đạt cực đại hoặc cực tiểu.
Khoảng đơn điệuKhoảng mà trên đó hàm số luôn tăng hoặc luôn giảm.

Tài liệu, đề thi và đáp án Toán 12