Logo Header
  1. Môn Toán
  2. Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 1.22 trang 32 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 1.22 trang 32 SGK Toán 12 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) \(y = \frac{{2x + 1}}{{x + 1}}\); b) \(y = \frac{{x + 3}}{{1 - x}}\).

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) \(y = \frac{{2x + 1}}{{x + 1}}\);

b) \(y = \frac{{x + 3}}{{1 - x}}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về sơ đồ khảo sát hàm số phân thức để khảo sát và vẽ đồ thị hàm số:

Sơ đồ khảo sát hàm số phân thức

1. Tìm tập xác định của hàm số.

2. Khảo sát sự biến thiên của hàm số:

+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.

+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.

+ Tìm cực trị của hàm số.

+ Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận của đồ thị hàm số.

+ Lập bảng biến thiên của hàm số.

3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.

Lời giải chi tiết

a) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)

2. Sự biến thiên:

\(y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}} > 0\forall x \ne - 1\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

Hàm số không có cực trị.

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x + 1}} = 2;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 1}}{{x + 1}} = 2\). \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x + 1}}{{x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x + 1}}{{x + 1}} = - \infty \).

Do đó, đồ thị hàm số nhận đường thẳng \(x = - 1\) làm tiệm cận đứng và đường thẳng \(y = 2\) làm tiệm cận ngang.

Bảng biến thiên:

Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức 2

3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là (0;1).

\(y = 0 \Leftrightarrow \frac{{2x + 1}}{{x + 1}} = 0 \Leftrightarrow x = \frac{{ - 1}}{2}\)

Giao điểm của đồ thị hàm số với trục hoành là điểm \(\left( {\frac{{ - 1}}{2};0} \right)\).

Đồ thị hàm số nhận giao điểm I(-1; 2) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức 3

b) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ 1 \right\}\)

2. Sự biến thiên:

\(y' = \frac{4}{{{{\left( {1 - x} \right)}^2}}} > 0\forall x \ne 1\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

Hàm số không có cực trị.

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x + 3}}{{1 - x}} = - 1;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{x + 3}}{{1 - x}} = - 1\) \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 3}}{{1 - x}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x + 3}}{{1 - x}} = - \infty \)

Do đó, đồ thị hàm số nhận đường thẳng \(x = 1\) làm tiệm cận đứng và đường thẳng \(y = - 1\) làm tiệm cận ngang.

Bảng biến thiên:

Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức 4

3. Đồ thị:

Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức 5

Giao điểm của đồ thị hàm số với trục tung là (0; 3).

\(y = 0 \Leftrightarrow \frac{{x + 3}}{{1 - x}} = 0 \Leftrightarrow x = - 3\)

Giao điểm của đồ thị hàm số với trục hoành là điểm \(\left( { - 3;0} \right)\).

Đồ thị hàm số nhận giao điểm I(1; -1) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 1.22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn giải chi tiết bài tập này:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm cấp một:
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm đạo hàm bằng không:
  4. f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)NBĐCNT

    (NB: Nghịch biến, ĐC: Đồng biến, NT: Ngược biến)

  7. Kết luận:
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Các kiến thức liên quan cần nắm vững:

  • Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x0 là giới hạn của tỷ số giữa độ biến thiên của hàm số và độ biến thiên của đối số khi đối số tiến tới x0.
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Điều kiện cực trị: Hàm số f(x) đạt cực đại tại x0 nếu f'(x0) = 0 và f''(x0) < 0. Hàm số f(x) đạt cực tiểu tại x0 nếu f'(x0) = 0 và f''(x0) > 0.

Ứng dụng của đạo hàm trong thực tế:

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc: Trong vật lý, đạo hàm của quãng đường theo thời gian là vận tốc, đạo hàm của vận tốc theo thời gian là gia tốc.
  • Tìm giá trị lớn nhất và nhỏ nhất: Đạo hàm được sử dụng để tìm giá trị lớn nhất và nhỏ nhất của hàm số, có ứng dụng trong kinh tế, kỹ thuật.
  • Nghiên cứu sự biến thiên của hàm số: Đạo hàm giúp ta xác định khoảng đồng biến, nghịch biến của hàm số, tìm cực trị, điểm uốn.

Luyện tập thêm:

Để nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm, các em nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Giaitoan.edu.vn sẽ tiếp tục cung cấp các bài giải chi tiết và hướng dẫn giải các bài tập Toán 12 khác. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 12