Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.37 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho hàm số \(y = f\left( x \right)\) xác định trên \[\mathbb{R}\backslash \left\{ {1;3} \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là sai? A. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho. B. Đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho. C. Đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho. D. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
Đề bài
Cho hàm số \(y = f\left( x \right)\) xác định trên \[\mathbb{R}\backslash \left\{ {1;3} \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Khẳng định nào sau đây là sai?A. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho.B. Đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho.C. Đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho.D. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\).
Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)
Lời giải chi tiết
Vì \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = - 1;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 7\) nên đường thẳng \(x = 1\) không phải là tiệm cận đứng của đồ thị hàm số đã cho.
Chọn D
Bài tập 1.37 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này thường liên quan đến việc xác định tính đơn điệu của hàm số, tìm cực trị, và vẽ đồ thị hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, điều kiện cần và đủ để hàm số đạt cực trị, và các bước vẽ đồ thị hàm số.
(Nội dung đề bài sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy tìm khoảng đơn điệu và cực trị của hàm số.)
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và kết luận. Ví dụ:
Bước 1: Tính đạo hàm f'(x) = 3x2 - 6x
Bước 2: Giải phương trình f'(x) = 0 => 3x2 - 6x = 0 => x = 0 hoặc x = 2
Bước 3: Lập bảng xét dấu f'(x):
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Bước 4: Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0 với giá trị f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị f(2) = -2.
Để hiểu sâu hơn về các khái niệm liên quan đến hàm số và đồ thị, các em có thể tham khảo thêm các bài tập tương tự trong SGK và sách bài tập Toán 12 tập 1 - Kết nối tri thức. Ngoài ra, các em cũng có thể tìm kiếm các tài liệu học tập trực tuyến hoặc tham gia các khóa học online để nâng cao kiến thức và kỹ năng giải bài tập.
Hy vọng bài giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập 1.37 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức và tự tin hơn trong quá trình học tập môn Toán.