Logo Header
  1. Môn Toán
  2. Giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right),\overrightarrow b = \left( {1;1; - 1} \right)\). a) Xác định tọa độ của vectơ \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \). b) Tính độ dài vectơ \(\overrightarrow u \). c) Tính \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\).

Đề bài

Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right),\overrightarrow b = \left( {1;1; - 1} \right)\).a) Xác định tọa độ của vectơ \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \).b) Tính độ dài vectơ \(\overrightarrow u \).c) Tính \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\).

Phương pháp giải - Xem chi tiếtGiải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức 1

a) Sử dụng kiến thức hệ về biểu thức tọa độ của phép trừ hai vectơ, phép nhân một số với một vectơ để tìm tọa độ của vectơ: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\). Ta có:

+ \(\overrightarrow a - \overrightarrow b = \left( {x - x';y - y';z - z'} \right)\);

+ \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực.

b) Sử dụng kiến thức về độ dài của vectơ trong không gian để tính: Nếu \(\overrightarrow a = \left( {x;y;z} \right)\) thì độ dài vectơ \(\overrightarrow a \) là \(\left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \)

c) Sử dụng kiến thức về cosin góc của 2 vectơ trong không gian để tính: Nếu \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\) là hai vectơ khác \(\overrightarrow 0 \) thì \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{xx' + yy' + zz'}}{{\sqrt {{x^2} + {y^2} + {z^2}} .\sqrt {x{'^2} + y{'^2} + z{'^2}} }}\)

Lời giải chi tiết

a) \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b = \left( { - 2 - 2.1;1 - 2.1;2 - 2\left( { - 1} \right)} \right) = \left( { - 4; - 1;4} \right)\)

b) \(\left| {\overrightarrow u } \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 1} \right)}^2} + {4^2}} = \sqrt {33} \)

c) \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\left( { - 2} \right).1 + 1.1 + 2.\left( { - 1} \right)}}{{\sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {2^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{ - \sqrt 3 }}{3}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan

Bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm.

Nội dung bài tập 2.40

Bài tập 2.40 thường có dạng yêu cầu tính đạo hàm của một hàm số tại một điểm hoặc trên một khoảng. Đôi khi, bài tập cũng yêu cầu học sinh sử dụng đạo hàm để tìm cực trị của hàm số hoặc để giải các bài toán liên quan đến tốc độ thay đổi.

Phương pháp giải bài tập 2.40

Để giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức, bạn có thể áp dụng các phương pháp sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần tính đạo hàm.
  2. Chọn quy tắc tính đạo hàm phù hợp: Dựa vào dạng của hàm số, chọn quy tắc tính đạo hàm phù hợp (quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, v.v.).
  3. Tính đạo hàm: Áp dụng quy tắc đã chọn để tính đạo hàm của hàm số.
  4. Thay giá trị: Nếu bài toán yêu cầu tính đạo hàm tại một điểm, hãy thay giá trị của điểm đó vào đạo hàm vừa tính được.
  5. Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Giả sử bài tập 2.40 yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại điểm x = 0.

Giải:

f'(x) = 2x + 2

f'(0) = 2(0) + 2 = 2

Vậy, đạo hàm của hàm số f(x) tại điểm x = 0 là 2.

Các dạng bài tập tương tự

Ngoài bài tập 2.40, còn rất nhiều bài tập tương tự trong SGK Toán 12 tập 1 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán khác nhau. Để nắm vững kiến thức và kỹ năng giải bài tập về đạo hàm, bạn nên luyện tập thường xuyên và tham khảo các tài liệu học tập khác.

Lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các khái niệm cơ bản về đạo hàm.
  • Hiểu rõ các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tính vận tốc và gia tốc: Đạo hàm của hàm vị trí theo thời gian cho ta vận tốc, và đạo hàm của vận tốc theo thời gian cho ta gia tốc.
  • Tìm cực trị của hàm số: Đạo hàm được sử dụng để tìm các điểm cực trị của hàm số, giúp ta xác định giá trị lớn nhất và nhỏ nhất của hàm số.
  • Giải các bài toán tối ưu hóa: Đạo hàm được sử dụng để giải các bài toán tối ưu hóa, giúp ta tìm ra giải pháp tốt nhất cho một vấn đề nào đó.

Kết luận

Bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng rằng, với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12