Logo Header
  1. Môn Toán
  2. Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Thống kê thời gian trong tuần dành cho đọc sách của một số nhân viên trong một công ty được cho trong bảng sau: a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là A. 13. B. 10. C. 8. D. 6. b) Độ lệch chuẩn của mẫu số liệu ghép nhóm này là (làm tròn kết quả đến hàng phần trăm) A. 1,99. B. 2,02. C. 3,97. D. 4,09.

Đề bài

Thống kê thời gian trong tuần dành cho đọc sách của một số nhân viên trong một công ty được cho trong bảng sau:

Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức 1

a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là

A. 13.

B. 10.

C. 8.

D. 6.

b) Độ lệch chuẩn của mẫu số liệu ghép nhóm này là (làm tròn kết quả đến hàng phần trăm)

A. 1,99.

B. 2,02.

C. 3,97.

D. 4,09.

Phương pháp giải - Xem chi tiếtGiải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức 2

a) Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:

Cho mẫu số liệu ghép nhóm:

Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức 3

Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).

b) Sử dụng kiến thức về phương sai của mẫu số liệu ghép nhóm để tính: Phương sai của mẫu số liệu ghép nhóm, kí hiệu là \({s^2}\), là một số được tính theo công thức sau: \({s^2} = \frac{1}{n}\left( {{m_1}x_1^2 + ... + {m_k}x_k^2} \right) - {\left( {\overline x } \right)^2}\), trong đó \(n = {m_1} + ... + {m_k}\) với \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\) là số trung bình của mẫu số liệu ghép nhóm.

Sử dụng kiến thức độ lệch chuẩn của mẫu số liệu ghép nhóm để tính: Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu là s, là căn bậc hai số học của phương sai của mẫu số liệu ghép nhóm, tức là \(s = \sqrt {{s^2}} \)

Lời giải chi tiết

a) Khoảng biến thiên của mẫu số liệu là: \(R = 10 - 0 = 10\)

Chọn B

b) Mẫu số liệu ghép nhóm với giá trị đại diện:

Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức 4

Số giờ đọc trung bình: \(\overline x = \frac{{1.3 + 3.8 + 5.15 + 7.7 + 9.2}}{{3 + 8 + 15 + 7 + 2}} = \frac{{169}}{{35}}\) (giờ)

Phương sai: \({s^2} = \frac{1}{{35}}\left( {{1^2}.3 + {3^2}.8 + {5^2}.15 + {7^2}.7 + {9^2}.2} \right) - {\left( {\frac{{169}}{{35}}} \right)^2} = \frac{{4864}}{{1225}}\)

Độ lệch chuẩn: \(s = \sqrt {\frac{{4864}}{{1225}}} \approx 1,99\)

Chọn A

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

Bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các quy tắc đạo hàm và kỹ năng biến đổi đại số là rất quan trọng để hoàn thành bài tập này một cách chính xác.

Nội dung bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập 13 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, hoặc giải các bài toán liên quan đến vận tốc, gia tốc.

Phương pháp giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Để giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững các quy tắc đạo hàm: Đảm bảo bạn hiểu rõ và có thể áp dụng thành thạo các quy tắc đạo hàm cơ bản, như đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
  2. Sử dụng các công thức đạo hàm: Ghi nhớ và sử dụng các công thức đạo hàm của các hàm số đặc biệt, như đạo hàm của hàm hợp, đạo hàm của hàm ẩn.
  3. Biến đổi đại số: Sử dụng các kỹ năng biến đổi đại số để đơn giản hóa biểu thức trước khi tính đạo hàm.
  4. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Lưu ý khi giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

Khi giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức, bạn cần lưu ý những điều sau:

  • Đọc kỹ đề bài để hiểu rõ yêu cầu của bài toán.
  • Chọn phương pháp giải phù hợp với từng dạng bài.
  • Thực hiện các phép tính cẩn thận để tránh sai sót.
  • Kiểm tra lại kết quả trước khi kết luận.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 2 - Kết nối tri thức
  • Sách bài tập Toán 12 tập 2 - Kết nối tri thức
  • Các trang web học toán online uy tín, như giaitoan.edu.vn

Kết luận

Bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12