Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Thống kê thời gian trong tuần dành cho đọc sách của một số nhân viên trong một công ty được cho trong bảng sau: a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là A. 13. B. 10. C. 8. D. 6. b) Độ lệch chuẩn của mẫu số liệu ghép nhóm này là (làm tròn kết quả đến hàng phần trăm) A. 1,99. B. 2,02. C. 3,97. D. 4,09.
Đề bài
Thống kê thời gian trong tuần dành cho đọc sách của một số nhân viên trong một công ty được cho trong bảng sau:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là
A. 13.
B. 10.
C. 8.
D. 6.
b) Độ lệch chuẩn của mẫu số liệu ghép nhóm này là (làm tròn kết quả đến hàng phần trăm)
A. 1,99.
B. 2,02.
C. 3,97.
D. 4,09.
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về khoảng biến thiên của mẫu số liệu ghép nhóm để tính:
Cho mẫu số liệu ghép nhóm:
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = {a_{k + 1}} - {a_1}\).
b) Sử dụng kiến thức về phương sai của mẫu số liệu ghép nhóm để tính: Phương sai của mẫu số liệu ghép nhóm, kí hiệu là \({s^2}\), là một số được tính theo công thức sau: \({s^2} = \frac{1}{n}\left( {{m_1}x_1^2 + ... + {m_k}x_k^2} \right) - {\left( {\overline x } \right)^2}\), trong đó \(n = {m_1} + ... + {m_k}\) với \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\) là số trung bình của mẫu số liệu ghép nhóm.
Sử dụng kiến thức độ lệch chuẩn của mẫu số liệu ghép nhóm để tính: Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu là s, là căn bậc hai số học của phương sai của mẫu số liệu ghép nhóm, tức là \(s = \sqrt {{s^2}} \)
Lời giải chi tiết
a) Khoảng biến thiên của mẫu số liệu là: \(R = 10 - 0 = 10\)
Chọn B
b) Mẫu số liệu ghép nhóm với giá trị đại diện:
Số giờ đọc trung bình: \(\overline x = \frac{{1.3 + 3.8 + 5.15 + 7.7 + 9.2}}{{3 + 8 + 15 + 7 + 2}} = \frac{{169}}{{35}}\) (giờ)
Phương sai: \({s^2} = \frac{1}{{35}}\left( {{1^2}.3 + {3^2}.8 + {5^2}.15 + {7^2}.7 + {9^2}.2} \right) - {\left( {\frac{{169}}{{35}}} \right)^2} = \frac{{4864}}{{1225}}\)
Độ lệch chuẩn: \(s = \sqrt {\frac{{4864}}{{1225}}} \approx 1,99\)
Chọn A
Bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các quy tắc đạo hàm và kỹ năng biến đổi đại số là rất quan trọng để hoàn thành bài tập này một cách chính xác.
Bài tập 13 thường bao gồm các dạng bài sau:
Để giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Khi giải bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức, bạn cần lưu ý những điều sau:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài tập 13 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!