Logo Header
  1. Môn Toán
  2. Giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có độ dài mỗi cạnh đáy bằng 1 và độ dài mỗi cạnh bên bằng 2. Hãy tính góc giữa các cặp vectơ sau đây và tính tích vô hướng của mỗi cặp vectơ đó: a) (overrightarrow {AA'} ) và (overrightarrow {C'C;} ) b) (overrightarrow {AA'} ) và (overrightarrow {BC;} ) c) (overrightarrow {AC} ) và (overrightarrow {B'A'} ).

Đề bài

Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có độ dài mỗi cạnh đáy bằng 1 và độ dài mỗi cạnh bên bằng 2. Hãy tính góc giữa các cặp vectơ sau đây và tính tích vô hướng của mỗi cặp vectơ đó:a) \(\overrightarrow {AA'} \) và \(\overrightarrow {C'C} \);b) \(\overrightarrow {AA'} \) và \(\overrightarrow {BC} \);c) \(\overrightarrow {AC} \) và \(\overrightarrow {B'A'} \).

Phương pháp giải - Xem chi tiếtGiải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức 1

+ Sử dụng kiến thức về góc giữa hai vectơ trong không gian để tính: Trong không gian, cho hai vectơ \(\overrightarrow a \), \(\overrightarrow b \) khác \(\overrightarrow 0 \). Lấy một điểm O bất kì và gọi A, B là hai điểm sao cho \(\overrightarrow {OA} = \overrightarrow a ,\overrightarrow {OB} = \overrightarrow b \). Khi đó, góc \(\widehat {AOB}\left( {{0^0} \le \widehat {AOB} \le {{180}^0}} \right)\) được gọi là góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \), kí hiệu là \(\left( {\overrightarrow a ,\overrightarrow b } \right)\).

+ Sử dụng kiến thức về công thức xác định tích vô hướng của hai vectơ trong không gian để tính: Trong không gian, cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Tích vô hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là một số, kí hiệu là \(\overrightarrow a \cdot \overrightarrow b \), được xác định bởi công thức sau: \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Lời giải chi tiết

Giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức 2

a) Vì AA’ // CC’ nên hai vectơ \(\overrightarrow {AA'} \) và \(\overrightarrow {C'C} \) ngược hướng nhau.

Suy ra, \(\left( {\overrightarrow {AA'} ,\overrightarrow {C'C} } \right) = {180^0}\).

Do đó, \(\overrightarrow {AA'} .\overrightarrow {C'C} = \left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {C'C} } \right|.\cos \left( {\overrightarrow {AA'} ,\overrightarrow {C'C} } \right) = 2.2.\cos {180^o} = - 4\).

b) Vì A’ADD’ là hình chữ nhật nên \(\widehat {A'AD} = {90^o}\).

Vì ABCD là hình vuông nên \(\overrightarrow {BC} = \overrightarrow {AD} \). Do đó, \(\left( {\overrightarrow {AA'} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AA'} ,\overrightarrow {AD} } \right) = \widehat {A'AD} = {90^o}\).

Ta có: \(\overrightarrow {AA'} .\overrightarrow {BC} = \overrightarrow {AA'} .\overrightarrow {AD} = \left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AA'} ,\overrightarrow {AD} } \right) = 2.1.\cos {90^o} = 0\).

c) Vì A’ABB’ là hình chữ nhật nên \(\overrightarrow {B'A'} = \overrightarrow {BA} \).

Vì ABCD là hình vuông nên \(\widehat {CAB} = {45^o}\) và \(AC = \sqrt 2 \).

Ta có: \(\overrightarrow {AC} .\overrightarrow {B'A'} = - \overrightarrow {AC} .\overrightarrow {AB} = - \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AB} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right) = - \sqrt 2 .1.\cos {45^0} = - 1\).

Suy ra \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {B'A'} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {B'A'} }}{{AC.B'A'}} = \frac{{ - 1}}{{\sqrt 2 .1}} = {135^o}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán học. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan

Bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm.

Nội dung bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

Bài tập 2.10 thường có dạng như sau: Cho hàm số f(x). Tính đạo hàm f'(x) và sử dụng đạo hàm để giải các bài toán liên quan đến việc tìm cực trị, khoảng đơn điệu, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Phương pháp giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

  1. Bước 1: Xác định hàm số f(x) và yêu cầu của bài toán. Đọc kỹ đề bài để hiểu rõ hàm số f(x) và những gì cần tìm.
  2. Bước 2: Tính đạo hàm f'(x). Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của hàm số f(x).
  3. Bước 3: Tìm các điểm cực trị của hàm số. Giải phương trình f'(x) = 0 để tìm các điểm cực trị của hàm số.
  4. Bước 4: Xác định khoảng đơn điệu của hàm số. Xét dấu đạo hàm f'(x) trên các khoảng xác định của hàm số để xác định khoảng đơn điệu của hàm số.
  5. Bước 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Sử dụng các điểm cực trị và giá trị của hàm số tại các điểm biên để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Ví dụ minh họa giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

Ví dụ: Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Giải:

  • Bước 1: Tính đạo hàm f'(x). f'(x) = 3x2 - 6x
  • Bước 2: Tìm các điểm cực trị. Giải phương trình f'(x) = 0, ta được 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Bước 3: Xác định loại cực trị. Xét dấu đạo hàm f'(x) trên các khoảng (-∞, 0), (0, 2), (2, +∞). Ta thấy f'(x) > 0 trên (-∞, 0) và (2, +∞), f'(x) < 0 trên (0, 2). Vậy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Lưu ý khi giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

  • Nắm vững các quy tắc tính đạo hàm.
  • Chú ý đến tập xác định của hàm số.
  • Kiểm tra lại kết quả sau khi giải bài tập.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Các bài tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 1 - Kết nối tri thức và các tài liệu tham khảo khác.

Kết luận

Bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 12