Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là A. 0. B. 1. C. 2. D. 3.
Đề bài
Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là
A. 0.
B. 1.
C. 2.
D. 3.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\)
Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \)
Lời giải chi tiết
TXĐ: \(D = \left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} - 1} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{x}} }}{x} = 1;\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} - 1} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{x}} }}{x} = - 1\)
Do đó, đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) có hai đường tiệm cận ngang là \(y = 1;y = - 1\).
Chọn C
Bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số. Việc nắm vững các khái niệm và kỹ năng này là rất quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài tập 3 thường bao gồm các hàm số bậc ba hoặc bậc bốn, yêu cầu học sinh:
Để giải bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức một cách hiệu quả, bạn có thể áp dụng các bước sau:
Bài toán: Xét hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị và khoảng đồng biến, nghịch biến của hàm số.
Giải:
Để đạt được kết quả tốt nhất khi giải bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức, bạn cần:
Bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!