Logo Header
  1. Môn Toán
  2. Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức

Bài tập 4.3 trang 11 SGK Toán 12 tập 2 thuộc chương trình học Toán 12 Kết nối tri thức. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 4.3 trang 11 SGK Toán 12 tập 2, giúp các em học sinh hiểu rõ bản chất bài toán và rèn luyện kỹ năng giải toán.

Tìm: a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\); b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\); c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\); d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).

Đề bài

Tìm:

a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\);

b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\);

c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\);

d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).

Phương pháp giải - Xem chi tiếtGiải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)

Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)

Sử dụng kiến thức về nguyên hàm của hàm số lũy thừa để tính:

\(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\left( {\alpha \ne - 1} \right),\int {\frac{1}{x}} dx = \ln \left| x \right| + C\)

Sử dụng kiến thức về nguyên hàm của hàm số mũ để tính: \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\left( {0 < a \ne 1} \right)\)

Lời giải chi tiết

a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx = 3\int {{x^{\frac{1}{2}}}} dx + \int {{x^{\frac{{ - 1}}{3}}}} dx = 2x\sqrt x + \frac{3}{2}\sqrt[3]{{{x^2}}} + C\)

b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx = \int {\left( {7{x^{\frac{5}{2}}} - 3{x^{\frac{1}{2}}}} \right)dx = } 7\int {{x^{\frac{5}{2}}}} dx - 3\int {{x^{\frac{1}{2}}}} dx = 2{x^3}\sqrt x - 2x\sqrt x + C\)

c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx = \int {\frac{{4{x^2} + 4x + 1}}{{{x^2}}}} dx = \int 4 dx + 4\int {\frac{1}{x}} dx + \int {{x^{ - 2}}} dx = 4x + 4\ln \left| x \right| - \frac{1}{x} + C\)

d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx = \int {{2^x}} dx + 3\int {{x^{ - 2}}} dx = \frac{{{2^x}}}{{\ln 2}} - \frac{3}{x} + C\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan

Bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bài toán này thường liên quan đến việc tìm đạo hàm của hàm số, xét dấu đạo hàm để xác định tính đơn điệu của hàm số, và tìm cực trị của hàm số.

Phân tích đề bài

Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu của bài toán. Điều này bao gồm việc xác định hàm số cần xét, khoảng xác định của hàm số, và các yêu cầu cụ thể của bài toán (ví dụ: tìm đạo hàm, xét dấu đạo hàm, tìm cực trị).

Phương pháp giải

Để giải bài tập 4.3 trang 11 SGK Toán 12 tập 2, chúng ta có thể áp dụng các phương pháp sau:

  1. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số.
  2. Xét dấu đạo hàm: Xác định khoảng mà đạo hàm dương, âm hoặc bằng không. Điều này giúp chúng ta xác định tính đơn điệu của hàm số.
  3. Tìm cực trị: Giải phương trình đạo hàm bằng không để tìm các điểm cực trị của hàm số.
  4. Khảo sát hàm số: Dựa vào đạo hàm và các điểm cực trị để khảo sát hàm số, xác định các khoảng đồng biến, nghịch biến, cực đại, cực tiểu.

Lời giải chi tiết

(Giả sử đề bài cụ thể là: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.)

Bước 1: Tính đạo hàm

y' = 3x2 - 6x

Bước 2: Tìm điểm cực trị

Giải phương trình y' = 0:

3x2 - 6x = 0

3x(x - 2) = 0

=> x = 0 hoặc x = 2

Bước 3: Xét dấu đạo hàm

Xét khoảng (-∞; 0): Chọn x = -1, y' = 3(-1)2 - 6(-1) = 9 > 0 => Hàm số đồng biến trên (-∞; 0)

Xét khoảng (0; 2): Chọn x = 1, y' = 3(1)2 - 6(1) = -3 < 0 => Hàm số nghịch biến trên (0; 2)

Xét khoảng (2; +∞): Chọn x = 3, y' = 3(3)2 - 6(3) = 9 > 0 => Hàm số đồng biến trên (2; +∞)

Bước 4: Kết luận

Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 03 - 3(0)2 + 2 = 2

Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = 23 - 3(2)2 + 2 = -2

Ví dụ minh họa

Để hiểu rõ hơn về phương pháp giải bài tập 4.3, chúng ta hãy xem xét một ví dụ minh họa khác. (Ví dụ khác với hàm số khác)

Lưu ý quan trọng

  • Luôn kiểm tra lại kết quả sau khi giải bài tập.
  • Sử dụng máy tính cầm tay để kiểm tra lại các phép tính.
  • Nắm vững các quy tắc tính đạo hàm và các khái niệm liên quan.

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về đạo hàm, bạn có thể làm thêm các bài tập tương tự trong SGK Toán 12 tập 2 hoặc các tài liệu tham khảo khác.

Kết luận

Bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức là một bài toán quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày ở trên, các em học sinh sẽ hiểu rõ bài toán và giải quyết thành công.

Tài liệu, đề thi và đáp án Toán 12